
Stock Price Prediction Using LSTM and Sentiment
Analysis

Prof. Madhusmita Behera
Computer Science and Engineering
Cambridge Institute of Technology

KR Pram, Bangalore,India
madhu.cse@cambridge.edu.in

Tripurari kumar
Computer Science and Engineering
Cambridge Institute of Technology

KR Pram, Bangalore,India
tripurari7824@gmail.com

Biswajit Bej
Computer Science and Engineering
Cambridge Institute of Technology

KR Pram, Bangalore,India
bejbiswajit229@gmail.com

Yanamadni Venkata Sasank Kumar
Computer Science and Engineering
Cambridge Institute of Technology

KR Pram, Bangalore,India
yvskumar63@gmail.com

Abstract—Stock price prediction is a complex challenge in-
fluenced by various factors, including historical trends and
market sentiment. Existing models often rely on single-source
data, limiting their forecasting accuracy. This study presents
a hybrid approach that integrates Long Short-Term Memory
(LSTM) networks for time-series forecasting with sentiment
analysis derived from financial news. To dynamically combine
the two prediction outputs, Bayesian Optimization is employed
to calculate optimal weights, ensuring adaptability to market
fluctuations. Experimental results demonstrate that the proposed
method achieves improved accuracy, reducing the Mean Squared
Error compared to traditional fixed-weight models. This research
contributes to the field of financial forecasting by providing a
more responsive and data-driven prediction framework.

Index Terms—Stock Market Prediction, LSTM, Sentiment
Analysis, Bayesian Optimization, Financial Forecasting.

I. INTRODUCTION

The stock market is inherently volatile and influenced
by numerous factors, including past price movements and
investor sentiment. Traditional models like ARIMA and linear
regression are often insufficient for capturing the complexities
of financial time-series data. Deep learning models, partic-
ularly Long Short-Term Memory (LSTM) networks, have
demonstrated enhanced forecasting capabilities by capturing
long-term dependencies. However, relying solely on historical
prices overlooks the significant impact of market sentiment,
derived from news and social media. This paper proposes
a hybrid approach that combines LSTM predictions with
sentiment analysis scores, leveraging Bayesian Optimization to
dynamically determine the optimal weight allocation between
the two predictors. The objective is to improve forecasting
accuracy and adapt to changing market conditions.

II. LITERATURE SURVEY

The stock trading platform industry has evolved signifi-
cantly with advancements in web technologies, offering users
real-time access to financial markets. Leveraging the MERN

stack (MongoDB, Express.js, React.js, Node.js) for such plat-
forms provides a unified, scalable, and efficient solution for
meeting the demands of modern traders. This survey reviews
existing literature, relevant concepts, and implementations in
the context of stock trading platforms using the MERN stack.

Existing Applications: Several papers are proving the same
related solutions which we have taken as an reference to achive
our objective those features and limitations discussed below:

• Virtual Trade-X (The Paper Trading Web Applica-
tion,2023): Published: 2023 This paper introduces ’Vir-
tual TradeX,’ a web application built on the MERN
stack designed for real-time market data simulation and
stock price prediction. It incorporates machine learning
algorithms, specifically Linear Regression and LSTM,
to enhance stock price predictions, providing a risk-free
environment for aspiring traders.
Limitation:
• Limited predictive analytics: The use of basic models
like Linear Regression and LSTM might lack accuracy
in highly volatile markets.
• No discussion on advanced data handling techniques for
massive real-time data streams.
• Focuses on simulation rather than actual trade execution,
making it less applicable for real-world trading.

• Stock Market Prediction Using Machine Learning
(2019): Published: 2019 This study focuses on the appli-
cation of regression and LSTM-based machine learning
models to predict stock values. It considers factors such as
open, close, low, high, and volume to enhance prediction
accuracy.
Limitation:
• Focuses more on theoretical aspects of machine learning
algorithms rather than practical implementation in trading
platforms.
• May overlook the integration challenges between pre-

ISSN NO : 0363-8057

PAGE NO: 179

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 5 2025



dictive models and web-based platforms.
• Limited scope for user engagement features such as
portfolio tracking or market alerts.

• Stock Market Price Prediction Using Machine Learn-
ing Techniques (2023): Published: 2023 This research
employs advanced machine learning models to predict
stock price movements with a significant level of accu-
racy. It emphasizes the importance of selecting appropri-
ate models and features for effective prediction.
Limitation:
• Heavy reliance on stock price prediction without con-
sidering other market factors like sentiment analysis or
economic indicators. • The paper doesn’t address scal-
ability issues for deploying these models in real-time
applications. • Limited user interface design insights for
creating accessible tools for novice traders.

• Stock Market Prediction Using Machine Learning
(SVM and Regression Models, 2019): This paper dis-
cusses the use of machine learning algorithms, including
linear regression and support vector machines, for pre-
dicting stock prices. It provides insights into the effec-
tiveness of these models in financial market forecasting.
Limitation:
• Focused only on specific algorithms like Support Vector
Machines (SVM) and Linear Regression, which may not
perform well for time-series data compared to deep learn-
ing models like LSTM or GRU. • Lack of evaluation on
how external events (e.g., global news, market sentiment)
impact predictions. • The application scope is academic,
with no concrete implementation for end-user platforms.

• Stock Market Prediction Using Machine Learning
(2019):Published:2019 This study explores the
application of machine learning techniques for stock
market prediction, focusing on the use of historical data
and various predictive models to forecast future stock
prices.
Limitation:
• Primarily uses historical stock price data; does not
incorporate live market data or API integration.
• Doesn’t explore real-world challenges like latency in
live data updates or secure trade execution.
• Limited applicability for retail traders due to the
absence of practical user-oriented features.

III. TECHNOLOGICAL FOUNDATION

The proposed model consists of three core components:
LSTM-based stock price prediction, sentiment analysis ex-
tracted from commercial news, and Bayesian Optimization for
dynamic weight calculation.

• Backend-Libraries and Tools:

– WebSocket: For real-time updates of stock prices
and notifications.

– JWT (JSON Web Token): For secure user
authentication and session management.

– Bcrypt.js: For hashing and securing user passwords.

– Multer: For handling file uploads (e.g., profile
pictures or documents).

– Helmet.js: For enhancing security by securing
HTTP headers.

– Runtime Environment:Node.js: For executing
server-side logic with asynchronous processing to
handle concurrent user requests.

– Framework:Express.js: For creating RESTful APIs
and middleware for server-side operations.

– Database System:MongoDB: A NoSQL database
to store user portfolios, stock transaction logs, and
market data.

– Real-Time Data Integration:Stock Market APIs:
Integration with APIs like Alpha Vantage, IEX
Cloud, or Yahoo Finance for retrieving live stock
prices, market indices, and historical data.
Streaming Protocols: WebSocket or Server-Sent
Events (SSE) for live data updates and trading
activity monitoring.

– Development Tools:Code Editor/IDE:Visual Studio
Code: Preferred for its extensive JavaScript and
Node.js ecosystem support.
Version Control: Git: For managing source code.
Platforms like GitHub, GitLab, or Bitbucket for
collaboration and repository hosting.

• LSTM-BasedPrediction: LSTM networks, capable of
handling sequential data and long-term dependencies, are
used to predict future stock prices based on historical
closing prices. The LSTM model is trained on normalized
data with features such as open, high, low, close, and
volume. The network architecture includes input layers,
multiple LSTM layers, and a dense output layer to predict
the next day’s closing price.

• SentimentAnalysis: Market sentiment is extracted from
financial news articles using Natural Language Processing
(NLP) techniques. Preprocessing involves tokenization,
stop-word removal, and lemmatization. Each news article
is assigned a sentiment score, which is then aggregated
to compute a daily sentiment value.

• FinalPredictionUsingWeightedCombination: The final
prediction is computed as a weighted combination of the
LSTM prediction and sentiment score:

ISSN NO : 0363-8057

PAGE NO: 180

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 5 2025



Subject to:

w1 + w2 = 1, 0 < w1, 0 < w2

• BayesianOptimizationforWeightCalculation:
Traditional stock prediction models often rely on
fixed-weight combinations of Long Short- Term Memory
(LSTM) predictions and sentiment analysis scores. While
this calculation gives fair results, the weight allocation
is static and does not adjust to market fluctuations.
with respect to this limitation, we introduce Bayesian
Optimization, which dynamically determines the optimal
weight distribution between LSTM predictions and
sentiment scores.
The final prediction in our model is calculated as:

Final Prediction = (w1 × LSTMt) + (w2 × St)

where:

– w1 represents the weight assigned to the LSTM-
based stock price prediction.

– w2 represents the weight assigned to the sentiment
score derived from financial news.

– The weights satisfy the constraint:

w1 + w2 = 1, 0 ≤ w1, w2 ≤ 1

The goal is to find the optimal values of w1 and w2

that minimize the Mean Squared Error (MSE) between
the final prediction and the actual stock price. This
optimization problem is defined as:

MSE =

T∑
t=1

((w1 × LSTMt + w2 × St)− yt)
2

where yt represents the actual stock price at time t and
T is the total number of observations.
Bayesian Optimization is used to iteratively adjustw1 and
w2, ensuring that the final prediction is as accurate as to
actual stock prices. This process is adaptive, meaning the
weight distribution changes dynamically based on market
trends.

IV. PROPOSED ARCHITECTURE

The purpose of a stock trading platform built using the
MERN stack is to provide a robust, scalable, and user-friendly
solution for trading and managing stock market investments.
Leveraging MongoDB, Express.js, React.js, and Node.js
the platform facilitates seamless real- time interactions, such
as executing trades, viewing live market data, and managing
portfolios. It ensures efficient backend processing of trading
logic, secure data handling, and dynamic frontend capabilities
for an intuitive user experience. With features like WebSocket
integration for live updates, the platform caters to both casual

investors and professional traders, offering accessibility, speed,
and reliability in stock market operations.

A. System Architecture

Fig. 1. Flow of Execution

The system architecture of a stock trading platform using
the MERN stack integrates a robust, modular design to handle
real-time trading, user interactions, and secure data manage-
ment. The frontend, built with React.js, offers an intuitive
interface where users can view real-time stock data, place
orders, manage their portfolios, and receive notifications. This
frontend communicates with a backend, implemented using
Node.js and Express.js, which processes trading requests,
manages user authentication, handles portfolio updates, and
streams live data via WebSocket. The backend integrates
with MongoDB for data persistence, storing user profiles,
transactions, stock details, and portfolio data in optimized
collections. External APIs provide real-time market data and
analytics, which the backend fetches and relays to the fron-
tend. WebSocket ensures seamless real-time communication
between the frontend and backend, supporting live updates for

ISSN NO : 0363-8057

PAGE NO: 181

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 5 2025



stock prices and trade confirmations. The system is designed
with scalability and security in mind, leveraging HTTPS, JWT-
based authentication, and cloud-based deployment for efficient
and reliable performance.

V. IMPLEMENTATION

A. Sequence Diagram

The sequence diagram illustrates the workflow of a stock
price prediction system, highlighting the interaction between
various components. The system begins with the user, who
initiates a request by searching for stock details or requesting
predictions through the frontend interface. The frontend for-
wards the request to the backend, which acts as the central
processing unit. The backend interacts with external APIs to
fetch historical stock prices and sentiment data, which are
then returned to the backend for further processing. This
fetched data is stored in the database (e.g., MongoDB) to
ensure persistence and enable future reuse. The backend then
sends the data to an integrated ML model, which analyzes
it and generates predictions, including stock price trends and
sentiment insights. The prediction results are stored in the
database for efficient retrieval. Finally, the backend sends the
processed predictions and visualizations to the frontend, where
they are displayed to the user in an intuitive format. This
system effectively combines real-time data fetching, machine
learning-driven predictions, data persistence, and user-friendly
interfaces to deliver accurate and actionable stock market
insights.

Fig. 2. Sequence Diagram

B. Data Flow Diagram

The data flow diagram illustrates the architecture of a stock
trading platform, showcasing the interaction and flow of data
between its components. The platform begins with the fron-
tend, where users interact with a React-based user interface to
request stock predictions or insights. These requests are sent
to the backend via defined API endpoints, which are managed
by an Express server. The backend processes these requests by
interacting with the MongoDB database, which stores histor-
ical stock data, predictions, and other relevant information.
The historical data is passed to a machine learning (ML)
model, which analyzes it to generate predictions. A pattern
recognition module identifies trends and refines predictions
through a feedback loop, improving accuracy over time.

Fig. 3. Data Flow Diagram

ISSN NO : 0363-8057

PAGE NO: 182

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 5 2025



The backend then returns the predictions and insights to
the React frontend, where they are displayed to the user in an
intuitive format. This platform demonstrates a modular design,
separating concerns across the frontend, backend, database,
and machine learning layers. It combines efficient data per-
sistence, responsive user interfaces, and advanced machine
learning techniques to deliver a seamless and intelligent stock
trading experience.
The flowchart illustrates the data flow and functionality of
a stock trading platform, showcasing how data is processed,
analyzed, and presented to users. The process begins with
historical stock data, which serves as the foundation for
training the system. This data is collected and preprocessed
to ensure it is clean and structured, removing inconsistencies
and preparing it for analysis. After preprocessing, a pattern
recognition module analyzes the data to identify trends and
patterns, which provide insights for training the machine
learning (ML) model. The trained model is integrated into the
system to generate predictions based on user requests.

Fig. 4. Design Flow Charts

Users interact with the platform through a frontend user
interface, where they can request stock predictions. These
requests are sent to the backend API server, which acts as the
central processing unit, managing communication between the
frontend, database, and ML model. The database stores his-
torical stock data and prediction results for efficient retrieval.
Upon receiving a user request, the backend fetches relevant
data from the database, processes it through the ML model,
and returns the predicted stock prices to the user interface.

The predictions, trends, and insights are then displayed to the
user in an accessible format.

The system incorporates a feedback loop, enabling contin-
uous improvement of the ML model by training it with new
data, ensuring it adapts to changing stock market trends. This
platform demonstrates a modular design, with separate layers
for data processing, frontend, backend, and machine learning,
ensuring scalability and maintainability. By combining real-
time predictions, data persistence, and user-friendly interfaces,
the platform delivers an intelligent and seamless stock trading
experience.

VI. RESULTS AND DISCUSSION:

Experiments were conducted on data Collected from finan-
cial stock from Yahoo Finance and sentiment scores from news
sources. The model was evaluated using MSE and Root Mean
Squared Error (RMSE). The performance comparison is shown
below:

TABLE I
MODEL PERFORMANCE COMPARISON

Model MSE RMSE Improvement (%)

LSTM Only 0.015 0.122 -
LSTM + Fixed Weights (70-30) 0.009 0.095 7.13%
LSTM + Bayesian Optimization 0.007 0.083 11.47%

The Bayesian-optimized model consistently outperformed
both the LSTM-only and fixed- weight models, demonstrating
the benefits of dynamic weight adjustment in volatile markets.

Fig. 5. System workflow

ISSN NO : 0363-8057

PAGE NO: 183

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 5 2025



VII. CONCLUSION

This study presents a robust stock price prediction hybrid
model by combining LSTM- based forecasts with sentiment
analysis. By employing Bayesian Optimization to calculate the
optimal weights for these components, the model adapts to
changing market dynamics, resulting in improved forecasting
accuracy. Updating the features, alternative optimization meth-
ods, and broader financial datasets, the future studies can be
enhanced.

VIII. FUTURE ENHANCEMENT:

Future enhancements for the stock trading platform aim
to improve its usability, accuracy, scalability, and security.
Developing a mobile application for Android and iOS is
essential to provide users with convenient, on-the-go trad-
ing access. Reinforcement Learning (RL) can significantly
improve the stock trading platform by enabling autonomous
trading agents that learn effective trading strategies through
interaction with the market environment. Unlike traditional
machine learning methods that rely on supervised data, RL
models learn by trial and error, making them highly effective
for dynamic environments like financial markets. Introducing
portfolio optimization tools with automated rebalancing and
risk management features will assist users in making informed
investment decisions. Strengthening security measures with
enhanced encryption, two-factor authentication (2FA), and
alignment with KYC/AML regulations is challenge for user
trust. A demo trading mode can attract beginners by allowing
them to practice without financial risk, while real-time notifi-
cations and alerts will keep users informed of market changes
and trade updates.

REFERENCES

[1] Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock
market. Journal of Computational Science.

[2] R. Gupta and H. Chen, “Financial sentiment analysis for stock predic-
tion,” *IEEE Transactions on Computational Finance*, 2023.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” *Neural
Computation*, vol. 9, no. 8, pp. 1735–1780, 1997.

[4] Yahoo Finance API Documentation, 2024.
https://www.yahoofinance.com.

[5] NewsAPI Documentation, 2024. https://newsapi.ai.
[6] Shahriari, B., et al. (2016). Taking the human out of the loop: A review

of Bayesian optimization. Proceedings of the IEEE.
[7] [2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

*Neural Computation*, vol. 9, no. 8, pp. 1735–1780, 1997.
[8] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock

market,” *Journal of Computational Science*, vol. 2, no. 1, pp. 1–8,
2011.

[9] [4] R. Gupta and H. Chen, “Financial sentiment analysis for stock
prediction,” *IEEE Transactions on Computational Finance*, vol. 1, no.
1, pp. xx–xx, 2023.

ISSN NO : 0363-8057

PAGE NO: 184

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 5 2025


