Study on Mechanical Properties of Partially Replaced Slag and Slag Sand to OPC and M-Sand in Concrete

DEEPAK^{1*}, Dr. H. C. CHOWDEGOWDA²

¹Research Scholar, ²Associate Professor

¹Research Scholar, Department of Civil Engineering, P.E.S. College of Engineering, MANDY- 571 401, Affiliated to Visvesvaraya Technological University (VTU), BELGAUM – 590 018
²Associate Professor and Head, Department of Civil Engineering, P.E.S. College of Engineering, MANDY-

571 401

Abstract

Concrete is the most used building material in the world. As a sustainable approach, this project explores the potential benefits of incorporating slag and slag sand in concrete mixtures. The objective is to study the mechanical properties of slag and slag sand at the end of 7, 28, 56 and 90 days of curing for M20 at replacement levels of 10%, 20%, 30%, 40%, and 50%. The combinations were designed using Taguchi's array and the results were analyzed using Anova. The best combinations resulted for Compressive strength, was 20% Slag, 30% Slag Sand, 1.5% SP, resulted 24.8N/mm², Split tensile strength, was 20% Slag, 20% Slag Sand, 2% SP, resulted 18.6N/mm², and Flexural strength was 20% Slag, 30% Slag sand, 1.5% SP, resulted 3.05N/mm² optimum results was observed.

Key Words: Slag, Slag Sand, Mechanical Properties, Taguchi, Anova

1. INTRODUCTION

The embodied energy of concrete can be reduced without decreasing the performance or increasing the cost, through usage of alternative or supplementary material having similar properties of cement, natural fine and coarse aggregate. To maneuver exploitation and green house effects caused by the concrete, by-products generated from different iron ore industries such as GGBFS and GBFSS resembling the properties of cement and natural fine aggregate can be used as alternative materials in concrete production, leading to technological, economic and environmental benefits. This also results in achieving global sustainable development and lowest possible environmental impact.

GGBFS is a by-product of iron manufacturing industry. Major steel plants in India generate 7760561 MT of GGBFS per annum. Iron ore, coke and limestone fed into the blast furnace at a temperature of 15000°C to 16000°C produces molten slag that floats above the molten iron. The molten slag is water-quenched rapidly after the molten iron is trapped off. This results in the formation of a glassy granulate which consists of siliceous (SiO₂: 30%-40%), aluminous (Al₂O₃: 3%-8%), Lime (CaO: 40%) and other residues (10%-20%). This glassy granulate is dried, ground to coarse grain size particle and powder form and designated as GBFSS and GGBFS respectively.

2. MATERIALS AND METHODS

There are many types of mortar are available, created by varying the proportions of the main ingredients below. In this way or by substitution for the cementitious and aggregate phases, the finished product can be tailored to its application with varying strength, density, or chemical properties.

The following materials were used in this research work

- OPC 43 grade (Brand Coramandala)
- R-Sand, M-Sand, and Coarse Aggregate
- GGBFS (Slag) and GGBFS (Slag Sand), (Source: Quality Poly tech, Mangalore)
- Water (Concrete lab tap water Source: bore well)
- Acids and alkaline solutions for weak (Nacl) and strong (H₂SO₄) acid (5%, 10% and 15%)

The methodology explains about the step by step procedure that is going to be done in the project.

Here the methodology adopted/ DOE using Taguchi

- The study includes casting of 3 cubes, 3 beams and 3 cylinders for comparing mechanical of concrete with % replacement of slag as fine aggregate.
- To know the compressive strength of cubes, flexural strength using beams and split tensile strength of concrete specimens using cylinders were tested and noted concordant values.
- Finally, the fresh and hardened properties were compared with normal concrete for analysing the maximum increase in properties such specimens

2.1 Taguchi (DOE)

Taguchi design of experiments (DOE) is a method used to optimize the quality of concrete by finding the best combination of factors. It's used to identify the optimal mix of ingredients for concrete, such as the amount of water, fly ash, and sand.

How it works

- Select factors: Choose the factors that affect the quality of the concrete, such as water-tobinder ratio, Slag, Slag Sand and R-Sand
- Select levels: Decide on the levels for each factor
- Design the experiment: Use an orthogonal array to design the experiment
- Conduct the experiment: Run the experiment using the designed orthogonal array
- Analyze the results: Use a signal-to-noise ratio to analyze the results
- Identify the optimum mix: Based on the results, determine the best combination of factors for the concrete

Benefits

- The Taguchi method reduces the number of experiments needed, which saves time and money
- It helps to identify the most influential factors on the quality of the concrete

Taguchi using Minitab

Conducting a Taguchi designed experiment can have the following steps:

- Choose Stat > DOE > Taguchi > Create Taguchi Design to generate a Taguchi design (orthogonal array). Each column in the orthogonal array represents a specific factor with two or more levels. Each row represents a run; the cell values identify the factor settings for the run. By default, Minitab's orthogonal array designs use the integers 1, 2, 3, to represent factor levels. If you enter factor levels, the integers 1, 2, 3, will be the coded levels for the design. You can also use Stat > DOE > Taguchi > Define Custom Taguchi Design to create a design from data that you already have in the worksheet. Define Custom Taguchi Design lets you specify which columns are your factors and signal factors. You can then easily analyze the design and generate plots.
- 2. After you create the design, you can display or modify the design:
 - Choose Stat > DOE > Display Design to change the units (coded or uncoded) in which Minitab expresses the factors in the worksheet.
 - Choose **Stat** > **DOE** > **Modify Design** to rename the factors, change the factor levels, add a signal factor to a static design, ignore an existing signal factor (treat the design as static), and add new levels to an existing signal factor.
- 3. Conduct the experiment and collect the response data. The experiment is done by running the complete set of noise factor settings at each combination of control factor settings (at each run). The response data from each run of the noise factors in the outer array are usually aligned in a row, beside the factor settings for that run of the control factors in the inner array.
- Choose Stat > DOE > Taguchi > Analyze Taguchi Design to analyze the experimental data. Note

You should analyze each response variable separately with Taguchi designs. Although Taguchi analysis accepts multiple response columns, these responses should be the same variable measured under different noise factor conditions.

5. Choose Stat > DOE > Taguchi > Predict Taguchi Results to predict signal to noise ratios and response characteristics for selected new factor settings.

3. RESULTS AND DISCUSSION

3.1 Basic properties

The materials used in concrete specimens were having equally diverse properties and behaviour. The properties of materials were determined in the laboratory as per standard specifications and represented in Table 3.1.1.

The specific gravity of fine aggregates, cement and GGBFS are within the specified limits. Standard consistency and Fineness of cement and GGBFS confirms to BIS. Initial setting time and final setting time of cement is within the specified limits whereas, GGBFS exceeded the threshold due to lack of calcium chloride content. Fineness Modulus, Water absorption and % air voids of fine aggregates were as per the specifications.

Table 3.1.1.: Basic test results of R-Sand, M-Sand, GGBFSS, Cement and GGBFS

Property	Cement	GGBFS	M- Sand	GBFSS	Coarse Aggregate	Threshold Value	Specification
Specific gravity	3.14	2.91	2.71	2.61	2.68	Fine Aggregate: 2.6-2.8 Coarse Aggregate 2.5-3	IS 2386 - 3(1963) IS 4031 - 11(1988)
Standard consistency (%)	32.3	30.3	-	-	-	26-33	IS 4031 - 4 (1988)
Initial setting time (min.)	39.7	80.3	-	-	-	30	IS 4031 - 5 (1988)
Final setting time (min.)	497	1080	-	-	-	600	IS 4031 - 5 (1988)
Fineness (%)	5.4	5.2	-	-	-	<10	IS 4031 - 1 (1996)
Fineness Modulus	-	-	2.81	2.7	-	Fine sand: 2.2- 2.6 Medium sand: 2.6-2.9 Coarse sand: 2.9-3.2	IS: 383 (1970)
Water absorption (%)	-	0.62	0.38	0.56	-	Fine Aggregate:<2	IS 2386 - 3 (1963)
Bulk density, (g/cc)	-	-	1.43	1.4	-	-	IS 2386 - 3 (1963)
% air voids	-	-	27.1	2.9	-	-	IS 2386 - 3 (1963)

3.1.2 Sieve analysis of M-Sand and GBFSS

Table 3.1.2 represents the sieve analysis of M-Sand and GBFSS. M-Sand and GBFSS as fine aggregates and were conformed to the grading zone II as per IS: 383-1970 was used.

Sieve Size(mm)	R-Sand	Slag Sand	M-Sand	Zone II Limits
4.75	96.35	100	100	100-90
2.36	93	99	99	100-75
1.18	75	87	89	90-55
0.6	45	49	45	59-35
0.3	13.87	10	9	30-8
0.15	3.19	0.6	0.45	10-0

Table 3.1.2.: Sieve analysis of R-Sand, Slag Sand, and M-Sand

Figure 3.1.1: Gradation curve of R-Sand, Slag Sand, and M-Sand

The sieve analysis of R-Sand, M-Sand and GBFSS confirms to Zone II (IS 2386-1 (1963))

Table 3.1.3: Mix Proportions

SI.No.	Materials	Volume (kg/m³)
1	Cement	419
2	Fine Aggregate	675
3	Coarse Aggregate	1137
4	Water	167
5	W/C Ratio	0.4
6	Chemical admixture	3.75

Mix proportion: 1: 1.61: 2.71: 0.4

3.2 Characteristics/Compositions of GGBFS

Table 6.3.1 represents the Characteristics/Compositions of GGBFS which conforms the IS 12089:1987 specifications.

Table 3.2.1:	Characteristics/C	Compositions of GGBI	FS (Conforms IS	12089:1987)

Sl No.	Characteristics	Requirements as Per IS : 12089	Test Results
1	SiO ₂ (%)	-	33.30
2	Al ₂ O ₃ (%)	-	21.74
3	$Fe_{2}0_{3}(\%)$	-	0.80
4	Cao (%)	-	34.50
5	Mgo (%)	17.0 (Max)	8.30

6	Loss on Ignition (%)	-	0.33
7	IR (%)	5.0 (Max)	0.31
8	Manganese Content (%)	5.5 (Max)	0.09
9	Sulphide Sulphur (%)	2.0 (Max)	0.45
10	Glass Content (%)	85 (Min)	90
11	Moisture Content (%)	-	11.74
12	Particle Size Passing 50.0 mm	95%	100%
13	Chemical Mouli (CaO + MgO +	Greater than or equals	1.93
	Al ₂ O ₃)/ SiO ₂	to 1.0	

(Source: JSW Cement Ltd.)

3.3 Slump Test Results

Control Mix and Varied Mix Proportions

The slump cone test results are tabulated in the table 6.4.1 with the increase in grade the increase in slump was observed. With the increase in the dosage of super plasticizer the increase in the slump was observed.

Table 3.3.1: Slump co	ne test results	of control mix
-----------------------	-----------------	----------------

SI. NO	Concrete Grades	Slump (mm)
1	M20	102
2	M30	124
3	M40	132
4	M50	145

Table 3.3.2: Slump test results for different grades of concrete with varied mix proportions

Sl. NO	Grade of Concrete	Slag	Slag Sand	Super Plasticizer (%)	Slump (mm)
1	M20	10	40	2	148
2	M30	10	40	2	154
3	M40	10	40	2	163
4	M50	10	40	2	178

3.4 Mechanical Properties of M20 Grade Concrete

3.4.1 Compressive Strength Analysis

Sl. No	Slag	Slag Sand	Super Plasticizer (%)	Curing Age	Compressive Strength (N/mm2)	FITS	SNRA12
1	10	10	0.1	7	12.2	15.18604	21.7272
2	10	20	1	28	21.3	18.50155	26.56759
3	10	30	1.5	56	23.7	22.52349	27.49497
4	10	40	2	90	25.2	27.32792	28.02801
5	20	10	1	56	22.1	21.47815	26.88785
6	20	20	1.5	90	24.8	25.55992	27.88903
7	20	30	2	7	14.3	15.82853	23.10672
8	20	40	1.5	28	22.01	18.42139	26.8524
9	30	10	1.5	90	23.8	25.60758	27.53154
10	30	20	2	56	23.84	21.54383	27.54613
11	30	30	0.1	28	20.67	17.02374	26.30681
12	30	40	1	7	10.3	14.86185	20.25674
13	40	10	2	28	19.88	17.21723	25.96833
14	40	20	1.5	7	11.57	14.33269	21.26667
15	40	30	1	90	23.1	25.01124	27.27224
16	40	40	0.1	56	21.88	20.22484	26.80095

Table 3.4.1.1 Compressive Strength analysis

Linear Model Analysis: SN ratios versus Slag, Slag Sand, Super Plasticizer (%), Curing Days Estimated Model Coefficients for SN ratios

Term	Coef	SE Coef	Т	Р
Constant	8.85049	0.1368	64.716	0.000
Slag 10	0.31230	0.2369	1.318	0.279
Slag 20	0.02681	0.2369	0.113	0.917
Slag 30	0.24388	0.2369	1.030	0.379
Slag San 10	-0.37418	0.2369	-1.580	0.212
Slag San 20	-0.09961	0.2369	-0.421	0.702
Slag San 30	0.10954	0.2369	0.462	0.675
Super Pl 0.5	-0.04492	0.2369	-0.190	0.862
Super Pl 1.0	0.19961	0.2369	0.843	0.461
Super Pl 1.5	-0.27350	0.2369	-1.155	0.332
Curing D 7	-0.34947	0.2369	-1.475	0.237
Curing D 28	-0.12335	0.2369	-0.521	0.639
Curing D 56 Model Summary	0.39496	0.2369	1.667	0.194

		R-
S	R-Sq	Sq(adj)

 $0.5470\ 84.49\%$ 22.44%

Analysis of Variance for SN ratios

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Slag	3	1.9904	1.9904	0.6635	2.22	0.265
Slag Sand	3	1.1785	1.1785	0.3928	1.31	0.414
Super Plasticizer (%)	3	0.5231	0.5231	0.1744	0.58	0.666
Curing Days	3	1.1976	1.1976	0.3992	1.33	0.409
Residual Error	3	0.8977	0.8977	0.2992		
Total	15	5.7874				

Response Table for Signal to Noise Ratios

Larger is better

			Super	
			Plasticizer	Curing
Level	Slag	Slag Sand	(%)	Days
1	9.163	8.476	8.806	8.501
2	8.877	8.751	9.050	8.727
3	9.094	8.960	8.577	9.245
4	8.267	9.215	8.969	8.928
Delta	0.895	0.738	0.473	0.744
Rank	1	3	4	2

Figure 3.4.1.1 Main effects plot for SN ratios

Figure 3.4.1.2: Residual Plots for SN ratios

3.4.2 Split Tensile Strength Analysis

Table 3.4.2.1:	Split	Tensile	Strength	Analysis
----------------	-------	---------	----------	----------

			Super		Compressive		
		Slag	Plasticizer	Curing	Strength		
Sl. No	Slag	Sand	(%)	Age	(N/mm2)	FITS	SNRA12
1	10	10	0.1	7	12.2	15.18604	21.7272

2	10	20	1	28	21.3	18.50155	26.56759
3	10	30	1.5	56	23.7	22.52349	27.49497
4	10	40	2	90	25.2	27.32792	28.02801
5	20	10	1	56	22.1	21.47815	26.88785
6	20	20	0.1	90	24.8	25.55992	27.88903
7	20	30	2	7	14.3	15.82853	23.10672
8	20	40	1.5	28	22.01	18.42139	26.8524
9	30	10	1.5	90	23.8	25.60758	27.53154
10	30	20	2	56	23.84	21.54383	27.54613
11	30	30	0.1	28	20.67	17.02374	26.30681
12	30	40	1	7	10.3	14.86185	20.25674
13	40	10	2	28	19.88	17.21723	25.96833
14	40	20	1.5	7	11.57	14.33269	21.26667
15	40	30	1	90	23.1	25.01124	27.27224
16	40	40	0.1	56	21.88	20.22484	26.80095

Linear Model Analysis: SN ratios versus Slag, Slag Sand, Super Plasticizer, Curing Age

Estimated Model Coefficients for SN ratios

Term	Coef	SE Coef	Т	P
Constant	7.68520	0.2663	28.865	0.000
Slag 10	0.50120	0.4612	1.087	0.357
Slag 20	1.06592	0.4612	2.311	0.104
Slag 30	0.38665	0.4612	0.838	0.463
Slag San 10	0.08790	0.4612	0.191	0.861
Slag San 20	0.17464	0.4612	0.379	0.730
Slag San 30	0.25421	0.4612	0.551	0.620
Super PI 0.5	-0.51293	0.4612	-1.112	0.347
Super PI 1.0	-0.16938	0.4612	-0.367	0.738
Super PI 1.5	0.38897	0.4612	0.843	0.461
Curing A 0	1.08357	0.4612	2.350	0.100
Curing A 7	-1.54649	0.4612	-3.353	0.044
Curing A 28	0.25578	0.4612	0.555	0.618

Model Summary

S R-Sq R-Sq(adj) 1.0650 92.11% 60.54%

Analysis of Variance for SN ratios

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Slag	3	21.416	21.416	7.1388	6.29	0.083
Slag Sand	3	1.480	1.480	0.4932	0.43	0.744
Super Plasticizer	3	2.117	2.117	0.7055	0.62	0.647
Curing Age	3	14.696	14.696	4.8988	4.32	0.130
Residual Error	3	3.403	3.403	1.1342		
Total	15	43,112				

Response Table for Signal to Noise Ratios

Larger is better

Laval	Slag	Slag Sand	Super	Curing
Level	Slag	Siag Salid	Flasticizer	Age
1	8.186	7.773	7.172	8.769
2	8.751	7.860	7.516	6.139
3	8.072	7.939	8.074	7.941
4	5.731	7.168	7.979	7.892

3.4.3 Flexural Strength Analysis

			Super Plasticizer	Curing	Flexural Strength	
Sl. No	Slag	Slag Sand	(%)	Days	(N/mm2)	SNRA3
1	10	10	0.5	7	2.63	8.399115
2	10	20	1	28	2.78	8.880896
3	10	30	1.5	56	3.08	9.771014
4	10	40	2	90	3.02	9.600139
5	20	10	1	56	2.81	8.974126
6	20	20	0.5	90	2.88	9.18785
7	20	30	2	7	2.66	8.497633
8	20	40	1.5	28	2.77	8.849595
9	30	10	1.5	90	2.59	8.265995
10	30	20	2	56	2.99	9.513424
11	30	30	0.5	28	2.79	8.912084
12	30	40	1	7	3.05	9.685997
13	40	10	2	28	2.59	8.265995
14	40	20	1.5	7	2.35	7.421357
15	40	30	1	90	2.71	8.659386
16	40	40	0.5	56	2.73	8.723253

Table 3.4.3.1:	Flexural	Strength	Analysis
----------------	----------	----------	----------

Linear Model Analysis: SN ratios versus Slag, Slag Sand, Super Plasticizer (%), Curing Days Estimated Model Coefficients for SN ratios

	Slag 10	0.31230	0.2369	1.318	0.279
	Slag 20	0.02681	0.2369	0.113	0.917
	Slag 30	0.24388	0.2369	1.030	0.379
	Slag San 10	-0.37418	0.2369	-1.580	0.212
	Slag San 20	-0.09961	0.2369	-0.421	0.702
	Slag San 30	0.10954	0.2369	0.462	0.675
	Super Pl 0.5	-0.04492	0.2369	-0.190	0.862
	Super Pl 1.0	0.19961	0.2369	0.843	0.461
	Super Pl 1.5	-0.27350	0.2369	-1.155	0.332
	Curing D 7	-0.34947	0.2369	-1.475	0.237
	Curing D 28	-0.12335	0.2369	-0.521	0.639
	Curing D 56	0.39496	0.2369	1.667	0.194
/	adal Cumm				

Model Summary

 S
 R-Sq
 R-Sq(adj)

 0.5470
 84.49%
 22.44%

Analysis of Variance for SN ratios

Source	DF	Seq SS	Adj SS	Adj MS	F	Р
Slag	3	1.9904	1.9904	0.6635	2.22	0.265
Slag Sand	3	1.1785	1.1785	0.3928	1.31	0.414
Super Plasticizer (%)	3	0.5231	0.5231	0.1744	0.58	0.666
Curing Days	3	1.1976	1.1976	0.3992	1.33	0.409
Residual Error	3	0.8977	0.8977	0.2992		
Total	15	5.7874				

Response Table for Signal to Noise Ratios

Larger is better

			Super Plasticizer	Curing
Level	Slag	Slag Sand	(%)	Days
1	9.163	8.476	8.806	8.501
2	8.877	8.751	9.050	8.727
3	9.094	8.960	8.577	9.245
4	8.267	9.215	8.969	8.928
Delta	0.895	0.738	0.473	0.744
Rank	1	3	4	2

Figure 3.4.3.2 Residual Plots for SN ratios

Signal to Noise ratio

S/N ratio is used as measurable value instead of standard deviation due to the fact that as the mean decreases, the standard deviation also decreases and vice versa. In other words, the standard deviation cannot be minimized first and the mean brought to the target. In practice, the target mean value may change during the process development. Two of the applications in which the concept of S/S ratio is useful are the improvement of quality through variability ant the improvement of measurement. The S /N ratios characteristics can be divided into three categories.

• Larger is best characteristic

Larger is best is adopted for Ultimate Axial load & smaller is best is adopted for % of failure for the Taguchi's analysis as shown in figures. From the Response table of S/N ratio, it can be clearly seen that Diameter is the main parameter ranked 1 among 3 of the parameters.

Regression Analysis

After conducting the initial nine experiments (each in triplicate trial), linear regression model were developed for all curing ages and mechanical prosperities. The REGRESSION equation is developed. The equation can be used to predict the ultimate load carrying capacity of the remaining samples used in the experimental program. To verify the accuracy of such prediction of load carrying capacity of samples the remaining experiments are conducted and a comparison of experimental values is made with the predicted values. It is observed that regression model based on initial nine experiments were reasonably well. The residual plots for regression were obtained from Minitab as shown in Figure.

CONCLUSION

- Initial and Final setting time of GGBFS exceeded the threshold values
- For different grades of concrete W/B, workability was achieved with the addition of super plasticizer
- Maximum compressive strength, split tensile strength, and Flexural strengths obtained for different combinations are higher than that of the control mix
- The important parameters affecting the load-deformation behavior are Slag, Slag Sand, Super Plasticizer (%), and Curing Age
- From regression analysis, the Ultimate load carrying capacity can be well predicted

- From Taguchi's analysis, for maximum axial load carrying capacity using the response of means and response of S./N ratios, the predominate factor curing age
- The optimum results was observed for Compressive strength, was 20% Slag, 30% Slag Sand, 1.5% SP, resulted 24.8N/mm²
- The optimum results was observed for Split tensile strength, was 20% Slag, 20% Slag Sand, 2% SP, resulted 18.6N/mm²
- The optimum results was observed for Flexural strength was 20% Slag, 30% Slag sand, 1.5% SP, resulted 3.05N/mm²

REFERENCES

- Mohammed Jawahar Soufain, Syed Jawad Sujavandi, Umar Ahad Shariff & Dr N.S Kumar "Validation of buckling capacity of SCC in filled composite steel tubes using ANN R2016a" International journal of Emerging trends in Engineering and Development Issue 6, Volume 6 ISSN 2249-6149
- Mohammed Jawahar Soufain, Syed Jawad Sujavandi, Umar Ahad Shariff & Dr N.S Kumar, A Comparative Study of Different propagations for the development of Artificial Neural Network model to study the behavior of CST under compression, International Journal of research in Engineering & Technology, Volume 6 Issue 2 eISSN 2319-1163 pISSN 2321-7308
- Dr N.S Kumar & Sameera Simha T.P, Experimental Investigation on seismic resistance of recycled Concrete infilled Steel columns, International journal of Applied mechanics & Materials Volume 105-107 (2012) pp 1742-1750
- Syed Aqeeb Javeed Pasha, Khalid Nayaz Khan & Dr N.S Kumar, Reliability analysis of concrete filled steel tube using NASTRAN, International journal for scientific research & development, Volume 4 Issue 09,2016.
- Chen Zong-ping, Liu Feng, Zheng Hua-hai, Xue Jian-yang. Research on the Bearing Capacity of Recycled Aggregate Concrete-filled Circle SteelTube Column under Axial Compression Loading 978-1-4244-7739-5/10/\$26.00 ©2010 IEEE
- Chen Zong-ping, Liu Feng. Mechanical Behaviour of Recycled Concrete Filled Steel Tube Columns Strengthened by CFRP 978-1-61284-774-0/11/\$26.00 ©2011IEEE
- Douglas Montgomery, design and analysis of experiments 5th ed.New York: John Wiley& sons (ASIA) pvt. Ltd.; 2004.
- 8. Elremaily Ahmed, Azizinamini Atorod. Behavior and strength of circular concrete-filled tube columns. J construction steel res 2002;58:1567-91.

- 9. Eurocode 4. Design of composite steel and concrete structures, part 1.1:general rules for buildings. Commission of European communities, British standards institution;1994
- Furlong, R. W. (1968) "Design of Steel-encased concrete beam-columns" J.Stuct.Div.,ASCE,94(1),261-281. Gardner, N. J., and Jacobson, E. R.(1967). "Structural behavior of concrete filled steel tubes" ACI J.,64(7), 404-412.
- India standard recommended guidelines for concrete mix design. Bureau of Indian Standards, New Delhi, India.
- Knowels, R. B., and Park, R. (1970) "Axially loaded design for concrete filled steel tube." J.Struct.Div.,ASCE,96(10),2125-2153.
- 13. Liu Dalin, Gho wie- Min, Yuan Jie. Ultimate capacity of high-strength rectangular concretefilled steel hollow section stub columns. J construe steel res 2003;59:1499-515
- Mathews Paul Design of Experiments with MINITAB New Age International publishers ISBN 987-224-3111-7] Saatcioglu, M., and Razvi, S. R.(1992)."Strength and ductility of confined concrete."J.Struct.Eng.,118(6).1590-1607.
- Schneider SP. Axially loaded concrete-filled steel tubes.J struct eng, ASCE 1998;124(10):1125-38. Shams M saadeghavaziri MA. State of art concrete filled tubular columns ACI Structure J1997;94(5)558-7.