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Abstract
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some nonlinear fractional di¤erential equations in time.
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1 Introduction

Partial di¤erential equations of integer or fractional order appear in almost every �eld of physics,

applied science and engineering [1; 2]. To better understand these physical phenomena and apply

them to practical scienti�c research, it is important to �nd their exact solutions. The study of the

exact solution of these equations is interesting and important. Over the last few decades, many

authors have studied the solution of such equations using various methods developed. Recently,

the variational iteration method (VIM) [3; 4];has been applied to treat various types of nonlin-

ear problems, for example, fractional di¤erential equations [5], nonlinear di¤erential equations

[5], nonlinear thermo-elasticity [6], wave equations [5]. In references [7; 8], the Adomian decom-

position method (ADM), the homotopy perturbation method (HPM), the homotopy analysis

method (HAM) and the parameter variation method (VPM), the reduced di¤erential transfor-

mation method (RDTM) introduced by Kaskin and Oturanc [9; 10] are successfully applied to
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obtain the exact solution of integer and fractional order partial di¤erential equations. In this

article, we have used the BYJ method introduced by the author to construct a solution for some

fractional-order partial di¤erential equations. The BYJ technique is an iterative procedure for

obtaining a solution in the form of a Taylor series converging to the exact solution. The method

is semi-analytical for solving fractional, nonlinear, homogeneous and inhomogeneous partial dif-

ferential equations. Results show that the BYJ method is accurate, e¢ cient and requires less

e¤ort than other analytical and numerical methods.

2 BONAZEBI YINDOULA Joseph (BYJ) method

The Reduced Di¤erential Transformation Method (RDTM) was �rst proposed by Turkish math-

ematician Yildiray Keskin in 2009. This method is applicable to a wide class of linear and

nonlinear problems with approximations that converge rapidly to the exact solution if it exists.

The BYJ method, on the other hand, is based on a combination of the reduced di¤erential

transformation method (RDTM), successive approximations and Picard�s principle, and is used

to solve classical and fractional partial di¤erential equations.

2.1 Preliminary

Consider a two-variable function u(x; t) which is analytic and k�fois continuously di¤erentiable
with respect to x and time t. Assume that it can be represented as the product of two single-

variable functions, i.e. u(x; t) = f(x):g(t) then using the properties of the one-dimensional

di¤erential transformation, the function can be represented as follows:

u(x; t) =

0@ 1X
i=0

F (i)xi
1X
j=0

G(j)tj

1A =

1X
i=0

1X
j=0

u(i; j)xitj (1)

where u(i; j) = F (i)G(j)is called the spectrum of u(x; t).

The basic de�nitions and operations of the reduced di¤erential transformation method are

introduced as follows

2.1.1 De�nition 1

If u(x; t) is analytic and continuously di¤erentiable with respect to the space variable x and time

t, then the reduced di¤erential transform is given by:

uk(x) =
1

k!

�
@k

@tk
u(x; t)

�
t=t0

; k 2 N (2)
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where the t-dimensional function Uk(x) is a transformed function.

Lowercase u(x; t)represents the original function while uppercase Uk(x) represents the trans-

formed function.

The inverse reduced di¤erential transformation of Uk(x) is de�ned by:

u(x; t) =
1X
k=0

1

k!

�
@k

@tk
u(x; t)

�
t=t0

(t� t0)k =
1X
k=0

uk(x) (t� t0)k (3)

Among the above de�nitions, we can �nd that the concept of reduced di¤erential transformation

is derived from power series .

2.1.2 De�nition 2

If the function u(x; t) is analytic and continuous di¤erentiable for t, we have :

uk(x) =
1

� (k�+ 1)

�
@k�

@tk�
u(x; t)

�
t=t0

; k 2 N (4)

where � is a parameter describing the order of the fractional derivative in time and the

t-dimensional spectral function Uk(x) is the transformed function.

The inverse reduced di¤erential transformation of Uk(x) is de�ned by:

u(x; t) =
1X
k=0

1

� (k�+ 1)

�
@k�

@tk�
u(x; t)

�
t=t0

(t� t0)k =
1X
k=0

uk(x) (t� t0)k� (5)

2.1.3 Table of fundamental operations for reduced di¤erential transformation

Original function Reduced di¤erential transformation function

u(x; t) Uk(x) =
1
k!

h
@k

@tk
u(x)

i
t=t0

w(x; t) = @n�

@xn�u(x; t) and n 2 N Wk(x) =
@n�

@xn�Uk(x)

w(x; t) = @n�

@tn�u(x; t) and n 2 N Wk(x) =
�(1+(k+n)�)
�(1+k�) Uk+n(x)

2.1.4 The Mittag-Le­ er function

The Mittag-Le­ er function plays a very important role in the theory of integer-order di¤eren-

tial equations. It is also widely used in the search for solutions of fractional-order di¤erential

equations. This function was introduced by G. M. Mittag-Le­ er in 1905.

De�nition
The Mittag Le­ er function is the function denoted E�(z) de�ned by :

E�(z) =
+1X
k=0

zk

� (k�+ 1)
(6)

3

ISSN NO : 0363-8057

PAGE NO: 13

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 6 2025



where z is a complex number, � is a strictly positive real number

NB: The generalization of this function for two parameters is [17; 19] :

E�;�(z) =
+1X
k=0

zk

� (k�+ �)
;Re (�) > 0;Re (�) > 0 (7)

This function was introduced by R.P Agarwal and Erdelyi in 1953-1954.

2.2 Description of the BYJ method for a fractional partial di¤erential
equation

Consider the following non-linear partial di¤erential equation of fractional time order.

CDn�
t u(x; t) +Ru(x; t) +Nu(x; t) = f(x; t); t > 0; x 2 R (8)

with initial conditions

@iu(x; 0)

@ti
= gi(x),i = 0; 1; 2; 3; � � � ; n� 1 (9)

Where CDn�
t denotes the fractional derivative in the Caputo sense of order n , where n�1 <

n� < n; n 2 N�; R is a linear operator, N is a non-linear operator and f(x; t) is the source term.

Equation (8) can still be written as follows.

CDn�
t u(x; t) = f(x; t)�Ru(x; t)�Nu(x; t) (10)

Applying the reduced di¤erential transformation to ( 10) gives :

� (k�+ n�+ 1)

� (k�+ 1)
Uk+n(x) = Fk(x)�R (Uk(x))�N (Uk(x)) ; k 2 N (11)

Where Uk+n(x); L (Uk(x)) ; N (Uk(x)) and Fk(x) are the transformations of the terms
CDn�

t u(x; t); Ru(x; t); Nu(x; t) and f(x; t) respectively.Using the reduced transformations on

the initial conditions ( 9 ), we obtain

U0(x) = g0(x); U1(x) = g1(x); � � � ; Un�1(x) = gn�1(x) (12)

Applying the method of successive approximations to (11) , we get

� (k�+ n�+ 1)

� (k�+ 1)
Upk+n(x) = Fk(x)�R (U

p
k (x))�N

�
Up�1k (x)

�
; k 2 N;8p � 1 (13)

with initial conditions

Up0 (x) = g0(x); U
p
1 (x) = g1(x); � � � ; U

p
n�1(x) = gn�1(x) (14)
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First iteration
For p = 1 we have :8><>:

�(k�+n�+1)
�(k�+1) U1k+n(x) = Fk(x)�R

�
U1k (x)

�
�N

�
U0k (x)

�
; k 2 N

U10 (x) = g0(x); U
1
1 (x) = g1(x); � � � ; U1n�1(x) = gn�1(x)

(15)

Applying Picard�s principle, i.e. there exists U0k (x) such that N
�
U0k (x)

�
= 0

(15) becomes 8>>>>>>><>>>>>>>:

�(k�+n�+1)
�(k�+1) U1k+n(x) = Fk(x)�R

�
U1k (x)

�
; k 2 N

U10 (x) = g0(x);

U11 (x) = g1(x)
...

U1n�1(x) = gn�1(x)

(16)

and by a simple iterative calculation we obtain the values U1k (x) for k = 0; 1; 2; 3; � � �
Thus the inverse fractional reduced di¤erential transformation of the set of values

�
U1k (x)

	k=N
k=0

gives the approximate N -term solution as follows:

u1N (x; t) =

nX
k=0

U1k (x)t
k� (17)

Consequently, the exact solution of the problem at the �rst iteration is given by

u1 (x; t) = lim
n�!+1

u1N (x; t) (18)

Second iteration

For p = 2 we have:8><>:
�(k�+n�+1)
�(k�+1) U2k+n(x) = Fk(x)�R

�
U2k (x)

�
�N

�
U1k (x)

�
; k 2 N

U20 (x) = g0(x); U
2
1 (x) = g1(x); � � � ; U2n�1(x) = gn�1(x)

(19)

Assume that N
�
U1k (x)

�
= 0 then ( 19 ) becomes

8><>:
�(k�+n�+1)
�(k�+1) U2k+n(x) = Fk(x)�R

�
U2k (x)

�
; k 2 N

U20 (x) = g0(x); U
2
1 (x) = g1(x); � � � ; U2n�1(x) = gn�1(x)

(20)

which is therefore the same algorithm as in step p = 1
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If the series
+1X
k=0

U2k (x)t
k� is convergent, then we get

u2 (x; t) = lim
N�!+1

u2N (x; t) where u2N (x; t) =
NX
k=0

U2k (x)t
k� (21)

approximate solution of equation ( 8 ) in step 2

P -th iteration

Recursively, if the series
+1X
k=0

Upk (x)t
k� is convergent for p � 3, then we get

up (x; t) = lim
N�!+1

upN (x; t) where upN (x; t) =
NX
k=0

Upk (x)t
k (22)

approximate solution of equation (8) at step p

The solution to the problem (8) is therefore

u (x; t) = lim
p�!+1

up (x; t) (23)

3 Applications

3.1 Example 1

Consider the following Kuramoto-Sivashinsky problem [11; 18] :

8>><>>:
CD�

t u(x; t) = �
@4u(x;t)
@x4 � 2@

2u(x;t)
@x2 + u4(x; t)@

2u(x;t)
@x2 � u2(x; t)

�
@2u(x;t)
@x2

�3
u(x; 0) = cosx+ sinx

; (24)

0 < � � 1; t > 0; x 2 R (25)

The problem (24) can still be written as follows:(
CD�

t u(x; t) = �
@4u(x;t)
@x4 � 2@

2u(x;t)
@x2 +N(u(x; t))

u(x; 0) = cosx+ sinx
(26)

with

N(u(x; t)) = u4(x; t)
@2u(x; t)

@x2
� u2(x; t)

�
@2u(x; t)

@x2

�3
(27)

the non-linear term
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Applying the reduced di¤erential transformation to (25) gives :8>><>>:
RDT

�
CD�

t u(x; t)
�
= �RDT

�
@4u(x;t)
@x4

�
� 2RDT

�
@2u(x;t)
@x2

�
+RDT (N(u(x; t)))

RDT (u(x; 0)) = cosx+ sinx

(28)

This gives8>><>>:
�(k�+�+1)
�(k�+1) Uk+1(x) = �

@4Uk(x)
@x4 � 2

�
@2Uk(x)
@x2

�
+N(Uk(x));8k � 0

U0(x) = cosx+ sinx

(29)

Using the idea of the principle of successive approximations, we obtain the following:8>><>>:
�(k�+�+1)
�(k�+1) U

p
k+1(x) = �

@4Up
k (x)

@x4 � 2
�
@2Up

k (x)

@x2

�
+N(Up�1k (x));8k � 0

Up0 (x) = cosx+ sinx

8p � 1 (30)

First iteration

For p = 1 we have :8>><>>:
�(k�+�+1)
�(k�+1) U

1
k+1(x) = �

@4U1
k(x)

@x4 � 2
�
@2U1

k(x)
@x2

�
+N(U0k (x));8k � 0

U10 (x) = cosx+ sinx

(31)

By Picard�s principle ,there exists U0k (x) any root of the equation N(U
0
k (x)) = 0

(30) becomes 8>><>>:
U10 (x) = cosx+ sinx

U1k+1(x) =
�(k�+1)

�(k�+�+1)

�
�@4U1

k(x)
@x4 � 2

�
@2U1

k(x)
@x2

��
;8k � 0

(32)

For k = 0, we have :

U11 (x) =
�(1)

�(�+1)

�
�@4U1

0 (x)
@x4 � 2

�
@2U1

0 (x)
@x2

��
= �(1)

�(�+1)

�
�@4(cos x+sin x))

@x4 � 2
�
@2(cos x+sin x)

@x2

��
= cos x+sin x

�(�+1)

(33)

For k = 1 we have:
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U12 (x) =
�(�+1)
�(2�+1)

�
�@4U1

1 (x)
@x4 � 2

�
@2U1

1 (x)
@x2

��
= �(�+1)

�(2�+1)

�
1

�(�+1)

��
�@4(cos x+sin x)

@x4 � 2
�
@2(cos x+sin x)

@x2

��
= �(�+1)

�(2�+1)

�
1

�(�+1)

�
(cosx+ sinx)

= cos x+sin x
�(2�+1)

(34)

For k = 2 we have:

U13 (x) =
�(2�+1)
�(3�+1)

�
�@4U1

2 (x)
@x4 � 2

�
@2U1

2 (x)
@x2

��
= �(2�+1)

�(3�+1)

�
1

�(2�+1)

��
�@4(cosx+sin x)

@x4 � 2
�
@2(cosx+sin x)

@x2

��
= �(2�+1)

�(3�+1)

�
1

�(2�+1)

�
(cosx+ sinx)

= cos x+sin x
�(3�+1)

(35)

The inverse transform gives the approximate solution to the �rst ie

u1(x; t) =
1X
k=0

U1k (x)t
k�

= U10 (x)t
0 + U11 (x)t

� + U12 (x)t
2� + U13 (x)t

3� + � � �

= (cosx+ sinx) +
cosx+ sinx

� (�+ 1)
t� +

cosx+ sinx

� (2�+ 1)
t2� +

cosx+ sinx

� (3�+ 1)
t3� + � � �

= (cosx+ sinx)

�
1 +

t�

� (�+ 1)
+

t2�

� (2�+ 1)
+

t3�

� (3�+ 1)
+ � � �

�
= (cosx+ sinx)E�(t

�)

(36)

Let�s calculate N(U1k (x))

Like

N(u1(x; t)) =
�
u1(x; t)

�4 @2u1(x;t)
@x2 �

�
u1(x; t)

�2 �@2u1(x;t)
@x2

�3
= ((cosx+ sinx)E�(t

�))
4 @2((cos x+sin x)E�(t

�))
@x2 � ((cosx+ sinx)E�(t�))2

�
@2(cos x+sin x)E�(t

�))
@x2

�3
= E5�(t

�) (cosx+ sinx)
4 @2(cosx+sin x)

@x2 � E5�(t�) ((cosx+ sinx))
2
�
@2(cos x+sin x)

@x2

�3
= �E5�(t�) (cosx+ sinx)

5
+ E5�(t

�) ((cosx+ sinx))
5

= 0

(37)

So N(U1k (x)) = 0

Step 2 gives us the following algorithm8>><>>:
U2k+1(x) =

�(k�+1)
�(k�+�+1)

�
�@4U2

k(x)
@x4 � 2

�
@2U2

k(x)
@x2

�
+N(U1k (x))

�
;8k � 0

U20 (x) = cosx+ sinx

(38)
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Since N(U1k (x)) = 0; we obtain8>>>>>>>>>>><>>>>>>>>>>>:

U20 (x) = cosx+ sinx

U21 (x) =
cosx+ sinx

� (�+ 1)

U22 (x) =
cosx+ sinx

� (2�+ 1)

U23 (x) =
cosx+ sinx

� (3�+ 1)
...

(39)

The solution to step 2 is

u2(x; t) =
1X
k=0

U2k (x)t
k�

= U20 (x)t
0 + U21 (x)t

� + U22 (x)t
2� + U23 (x)t

3� + � � �

= (cosx+ sinx) +
cosx+ sinx

� (�+ 1)
t� +

cosx+ sinx

� (2�+ 1)
t2� +

cosx+ sinx

� (3�+ 1)
t3� + � � �

= (cosx+ sinx)

�
1 +

t�

� (�+ 1)
+

t2�

� (2�+ 1)
+

t3�

� (3�+ 1)
+ � � �

�
= (cosx+ sinx)E�(t

�)

(40)

Subsequently, for p � 3, we can �nd the same approximate solution by recurrence at each

step

u3(x; t) = u4(x; t) = u5(x; t) = � � � = up(x; t) = � � � = (cosx+ sinx)E�(t�) (41)

The exact solution is therefore :

u(x; t) = lim
p�!+1

up(x; t) = (cosx+ sinx)E�(t
�) (42)

where E�(t�) is the Mittag-Le­ er function.

For � = 1;

u(x; t) = (cosx+ sinx)E1(t) = (cosx+ sinx) e
t (43)

is the exact solution to the problem

3.2 Example 2

Consider the following nonlinear fractional-order di¤usion problem [15; 16]
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8><>:
CD�

t u(x; t) =
1
2
@2u(x;t)
@x2 + u (x; t) +N (u(x; t))

u(x; 0) = 2 cosx+ 3 sinx

(44)

1 < � � 1; t > 0; x 2 R (45)

With

N (u(x; t)) =

�
u(x; t)

@u(x; t)

@x

�3
+

�
u(x; t)

@3u(x; t)

@x3

�3
(46)

the non-linear term.

Using the fractional RDT method for the problem (43) we obtain :8><>:
�(k�+�+1)
�(k�+1) Uk+1(x) =

1
2
@2Uk(x)
@x2 + Uk (x) +N (Uk(x)) ;8k � 0

U0(x) = 2 cosx+ 3 sinx

(47)

The method of successive approximations to ( 45 ) gives8>><>>:
�(k�+�+1)
�(k�+1) U

p
k+1(x) =

1
2

@2Up
k (x)

@x2 + Upk (x) +N
�
Up�1k (x)

�
;8k � 0

Up0 (x) = 2 cosx+ 3 sinx

;8p � 1 (48)

Or8>><>>:
Upk+1(x) =

�(k�+1)
�(k�+�+1)

�
1
2

@2Up
k (x)

@x2 + Upk (x)
�
+ �(k�+1)

�(k�+�+1)N
�
Up�1k (x)

�
;8k � 0

Up0 (x) = 2 cosx+ 3 sinx

;8p � 1

(49)

Apply Picard�s principle to (47) let U0k (x) be a root of N
�
U0k (x)

�
= 0

Step 1
For p = 1 , we obtain8>><>>:

U1k+1(x) =
�(k�+1)

�(k�+�+1)

�
1
2
@2U1

k(x)
@x2 + U1k (x)

�
;8k � 0

U10 (x) = 2 cosx+ 3 sinx

(50)

10
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For k = 0, we have :

U11 (x) =
�(+1)
�(�+1)

�
1
2
@2U1

0 (x)
@x2 + U10 (x)

�
= �(+1)

�(�+1)

�
1
2
@2(2 cos x+3 sin x)

@x2 + 2 cosx+ 3 sinx
�

= 1
�(�+1)

�
cosx+ 3

2 sinx
�

=
1
2

�(�+1) (2 cosx+ 3 sinx)

(51)

For k = 1, we have :

U12 (x) =
�(�+1)
�(2�+1)

�
1
2
@2U1

1 (x)
@x2 + U11 (x)

�
= �(�+1)

�(2�+1)

�
1

�(�+1)

��
1
2

@2((cos x+ 3
2 sin x))

@x2 +
�
cosx+ 3

2 sinx
��

=
( 12 )

2

�(2�+1) (2 cosx+ 3 sinx)

(52)

For k = 2, we have :

U13 (x) =
�(2�+1)
�(3�+1)

�
1
2
@2U1

2 (x)
@x2 + U12 (x)

�
= �(2�+1)

�(3�+1)

�
1

�(2�+1)

��
1
2

@2( 12 cos x+
3
4 sin x)

@x2 +
�
1
2 cosx+

3
4 sinx

��
=

( 12 )
3

�(3�+1) (2 cosx+ 3 sinx)

(53)

By analogy for k = n we obtain

U1n(x) =

�
1
2

�n
� (n�+ 1)

(2 cosx+ 3 sinx) ;8n � 0 (54)

The approximate solution to the �rst step is given by :

u1(x; t) =
1X
n=0

U1n(x)t
n�

=
1X
n=0

�
( 12 )

n

�(n�+1) (2 cosx+ 3 sinx)

�
tn�

= (2 cosx+ 3 sinx)
1X
n=0

�
( 12 t

�)
n

�(n�+1)

�
= (2 cosx+ 3 sinx)E�

�
1
2 t
�
�

(55)

Step 2
For p = 2 (47) becomes :8>><>>:

U2k+1(x) =
�(k�+1)

�(k�+�+1)

�
1
2
@2U2

k(x)
@x2 + U2k (x)

�
+ �(k�+1)

�(k�+�+1)N
�
U1k (x)

�
;8k � 0

U20 (x) = 2 cosx+ 3 sinx

(56)
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First, let�s calculate N
�
U1k (x)

�
or

N
�
u1(x; t)

�
=
�
u1(x; t)@u

1(x;t)
@x

�3
+
�
u1(x; t)@

3u1(x;t)
@x3

�3
=

��
(2 cosx+ 3 sinx)E�

�
1
2 t
�
�� @((2 cos x+3 sin x)E�( 12 t�))

@x

�3
+��

(2 cosx+ 3 sinx)E�
�
1
2 t
�
�� @3((2 cos x+3 sin x)E�( 12 t�))

@x3

�3
=
h
(2 cosx+ 3 sinx) @(2 cos x+3 sin x)@x

i3
E6�
�
1
2 t
�
�
+
h
(2 cosx+ 3 sinx) @

3(2 cos x+3 sin x)
@x3

i3
E6�
�
1
2 t
�
�

=
h
((2 cosx+ 3 sinx) (3 cosx� 2 sinx))3 � ((2 cosx+ 3 sinx) (3 cosx� 2 sinx))3

i
E6�
�
1
2 t
�
�

= 0

(57)

Since N
�
u1(x; t)

�
= 0 then N

�
U1k (x)

�
= 0, we obtain the same algorithm as in step p = 1,

i.e. 8>><>>:
U2k+1(x) =

�(k�+1)
�(k�+�+1)

�
1
2
@2U2

k(x)
@x2 + U2k (x)

�
;8k � 0

U20 (x) = 2 cosx+ 3 sinx

(58)

The result is

U2n(x) =

�
1
2

�n
� (n�+ 1)

(2 cosx+ 3 sinx) ;8n � 0 (59)

The solution to the problem in step 2 is

u2(x; t) =

1X
n=0

U2n(x)t
n�

=
1X
n=0

�
( 12 )

n

�(n�+1) (2 cosx+ 3 sinx)

�
tn�

= (2 cosx+ 3 sinx)
1X
n=0

�
( 12 t

�)
n

�(n�+1)

�
= (2 cosx+ 3 sinx)E�

�
1
2 t
�
�

(60)

Subsequently, for p � 3, we can �nd the same approximate solution by recurrence at each

step

u3(x; t) = u4(x; t) = u5(x; t) = � � � = up(x; t) = � � � = (2 cosx+ 3 sinx)E�
�
1

2
t�
�

(61)

The exact solution is therefore :

u(x; t) = lim
p�!+1

up(x; t) = (2 cosx+ 3 sinx)E�

�
1

2
t�
�

(62)
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where E�
�
1
2 t
�
�
is the Mittag-Le­ er function.

The exact solution of ( 43 ) for � = 1 is

u(x; t) = (2 cosx+ 3 sinx) e
1
2 t (63)

3.3 Example 3

Consider the following Burgers-type problem [12; 13]:

8><>:
CD�

t u(x; t) = �u(x; t)� u(x; t)
@u(x;t)
@x � !

2 sin (2!x) e
2�t

u(x; 0) = cos!x

; (64)

! 6= 0; 0 < � � 1; t > 0; x 2 R (65)

Let�s ask

N(u(x; t)) = �u(x; t)@u(x; t)
@x

� !
2
sin (2!x) e2�t (66)

the non-linear term

The problem (62) can still be written as8><>:
CD�

t u(x; t) = �u(x; t) +N(u(x; t))

u(x; 0) = cos!x; ! 6= 0
(67)

By applying the reduced di¤erential transformation to ( 64 ) , we obtain the following iteration

relation
� (k�+ �+ 1)

� (k�+ 1)
Uk+1(x) = �Uk(x) +N(Uk(x)) (68)

with the initial condition in the form :

U0(x) = cos!x; ! 6= 0 (69)

In addition, the method of successive approximations gives8>><>>:
Up0 (x) = cos!x; ! 6= 0

Upk+1(x) =
�(k�+1)

�(k�+�+1)

�
�Upk (x) +N(U

p�1
k (x))

�
;8k � 0

;8p � 1 (70)

Apply Picard�s principle to (67) let U0k (x) be any root of the equation N(U
0
k (x)) = 0
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Thus for p = 1 , we have8><>:
U10 (x) = cos!x; ! 6= 0

U1k+1(x) =
�(k�+1)

�(k�+�+1)

�
�U1k (x)

�
;8k � 0

(71)

The result is 8>>>>>>>>><>>>>>>>>>:

U10 (x) = cos!x; ! 6= 0

U11 (x) =
�

�(�+1) cos!x

U12 (x) =
�2

�(2�+1) cos!x

U1n(x) =
�n

�(n�+1) cos!x

(72)

The approximate solution at step p = 1 is8>>>>>>>>>>><>>>>>>>>>>>:

u1(x; t) =

1X
n=0

U1n(x)t
n�

=
1X
n=0

�
�n

�(n�+1) cos!x
�
tn�

=
1X
n=0

�
(�t�)n

�(n�+1)

�
cos!x

= E� (�t
�) cos!x

(73)

Let�s calculate N(U1k (x))

Like

N(u1(x; t)) = �u1(x; t)@u
1(x;t)
@x � !

2 sin (2!x)E
2
� (�t

�)

= �E� (�t�) cos!x@(E�(�t
�) cos!x)
@x � !

2 sin (2!x)E
2
� (�t

�)

= � (E� (�t�))2 cos!x@(cos!x)@x � !
2 sin (2!x) (E� (�t

�))
2

= � (E� (�t�))2 ! cos!x sinx! � !
2 sin (2!x) (E� (�t

�))
2

= (E� (�t
�))

2 �!
2 sin (2!x)�

!
2 sin (2!x)

�
= 0

(74)

Since N
�
u1(x; t)

�
= 0 then N

�
U1k (x)

�
= 0, we obtain the same algorithm as in step p = 1,

i.e. 8><>:
U20 (x) = cos!x; ! 6= 0

U2k+1(x) =
�(k�+1)

�(k�+�+1)

�
�U2k (x)

�
;8k � 0

(75)
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then after calculations we have :8>>>>>>>>><>>>>>>>>>:

U20 (x) = cos!x; ! 6= 0

U21 (x) =
�

�(�+1) cos!x

U22 (x) =
�2

�(2�+1) cos!x

U2n(x) =
�n

�(n�+1) cos!x

(76)

The solution to the problem in step 2 is

u2(x; t) =
1X
n=0

U1n(x)t
n�

=
1X
n=0

�
�n

�(n�+1) cos!x
�
tn�

=
1X
n=0

�
(�t�)n

�(n�+1)

�
cos!x

= E� (�t
�) cos!x

(77)

Subsequently, for p � 3, we can �nd the same approximate solution by recurrence at each

step

u3(x; t) = u4(x; t) = u5(x; t) = � � � = up(x; t) = � � � = E� (�t�) cos!x (78)

The exact solution is therefore :

u(x; t) = lim
p�!+1

up(x; t) = E� (�t
�) cos!x (79)

where E� (�t�) is the Mittag-Le­ er function.

The exact solution of (43) for � = 1 is

u(x; t) = E1 (�t) cos!x = e
�t cos!x (80)

3.4 Example 4

Consider the following nonlinear fractional-order di¤usion problem [12; 14]8>><>>:
CD�

t u(x; t) = �
@2u(x;t)
@x2 + !6u3(x; t) +

�
@2u(x;t)
@x2

�3
u(x; 0) = cos (!x) + sin (!x)

; (81)

! 6= 0; 1 < � � 1; t > 0; x 2 R (82)
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Let�s ask

N(u(x; t)) = !6u3(x; t) +

�
@2u(x; t)

@x2

�3
(83)

the non-linear term 8><>:
CD�

t u(x; t) = �
@2u(x;t)
@x2 +N(u(x; t))

u(x; 0) = cos (!x) + sin (!x)

; ! 6= 0 (84)

Applying the reduced di¤erential transformation to (80) , we obtain the following iteration

relation
� (k�+ �+ 1)

� (k�+ 1)
Uk+1(x) = �

@2Uk(x)

@x2
+N(Uk(x)) (85)

with the initial condition in the form :

U0(x) = cos (!x) + sin (!x) ; ! 6= 0 (86)

In addition, the method of successive approximations gives8>><>>:
Upk+1(x) =

�(k�+1)
�(k�+�+1)

�
�
@2Up

k (x)

@x2 +N(Up�1k (x))
�

Up0 (x) = cos (!x) + sin (!x) ; ! 6= 0
;8p � 1 (87)

Step 1

For p = 1 we have :8>><>>:
U1k+1(x) =

�(k�+1)
�(k�+�+1)

�
�
@2U1

k(x)
@x2 +N(U0k (x))

�
U10 (x) = cos (!x) + sin (!x) ; ! 6= 0

(88)

Apply Picard�s principle to (84), let U0k (x) be any root of the equation N(U
0
k (x)) = 0

then (84) becomes 8><>:
U10 (x) = cos (!x) + sin (!x) ; ! 6= 0

U1k+1(x) = �
�(k�+1)

�(k�+�+1)
@2U1

k(x)
@x2

(89)

Using (85), we obtain the following values in succession
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8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

U10 (x) = cos (!x) + sin (!x) ; ! 6= 0

U11 (x) =
(�!2�)

1

�(�+1) (cosx! + sinx!)

U12 (x) =
(�!2�)

2

�(2�+1) (cosx! + sinx!)

U13 (x) =
(�!2�)

3

�(3�+1) (cosx! + sinx!)
...

U1n(x) =
(�!2�)

n

�(n�+1) (cosx! + sinx!)

(90)

The approximate solution at step p = 1 is8>>>>>>>>>>><>>>>>>>>>>>:

u1(x; t) =
1X
n=0

U1n(x)t
n�

=
1X
n=0

�
(�!2�)

n

�(n�+1) (cosx! + sinx!)

�
tn�

=

1X
n=0

�
(��!2t�)

n

�(n�+1)

�
(cosx! + sinx!)

= (cosx! + sinx!)E�
�
��!2t�

�
(91)

Step 2

For p = 2 ( 83 ) becomes8>><>>:
U2k+1(x) =

�(k�+1)
�(k�+�+1)

�
�
@2U2

k(x)
@x2 +N(U1k (x))

�
U20 (x) = cos (!x) + sin (!x) ; ! 6= 0

(92)

Let�s calculate N(U1k (x))

Since

N(u1(x; t)) = !6
�
u1(x; t)

�3
+
�
@2u1(x;t)
@x2

�3
= !6

�
(cosx! + sinx!)E�

�
��!2t�

��3
+

�
@2(cos x!+sin x!)E�(��!2t�)

@x2

�3
=
�
E�
�
��!2t�

��3
!6 ((cosx! + sinx!))

3
+
�
E�
�
��!2t�

��3 �@2(cos x!+sin x!)
@x2

�3
=
�
E�
�
��!2t�

��3
!6 ((cosx! + sinx!))

3
+
�
E�
�
��!2t�

��3 ��!2 (cosx! + sinx!)�3
=
�
E�
�
��!2t�

��3 h
!6 ((cosx! + sinx!))

3 �
�
!2 (cosx! + sinx!)

�3i
= 0

(93)

then N(U1k (x)) = 0
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This gives 8>>>>>>>>>>>><>>>>>>>>>>>>:

U20 (x) = cos (!x) + sin (!x) ; ! 6= 0

U21 (x) =
(�!2�)

1

�(�+1) (cosx! + sinx!)

U22 (x) =
(�!2�)

2

�(2�+1) (cosx! + sinx!)

U23 (x) =
(�!2�)

3

�(3�+1) (cosx! + sinx!)
...

U2n(x) =
(�!2�)

n

�(n�+1) (cosx! + sinx!)

(94)

The solution to the problem at step p = 2 is

u2(x; t) =
1X
n=0

U2n(x)t
n�

=
1X
n=0

�
(�!2�)

n

�(n�+1) (cosx! + sinx!)

�
tn�

=
1X
n=0

�
(��!2t�)

n

�(n�+1)

�
(cosx! + sinx!)

= (cosx! + sinx!)E�
�
��!2t�

�
(95)

so

u1(x; t) = u2(x; t) = (cosx! + sinx!)E�
�
��!2t�

�
(96)

Subsequently, for p � 3, we can �nd the same approximate solution by recurrence at each

step

u3(x; t) = u4(x; t) = u5(x; t) = � � � = up(x; t) = � � � = (cosx! + sinx!)E�
�
��!2t�

�
(97)

The exact solution is therefore :

u(x; t) = lim
p�!+1

up(x; t) = (cosx! + sinx!)E�
�
��!2t�

�
(98)

where E�
�
��!2t�

�
is the Mittag-Le­ er function.

The exact solution of (78) for � = 1 is

u(x; t) = (cosx! + sinx!) e��!
2t (99)

4 Conclusion

In this article, we �rst describe the BYJ numerical method and use it to solve certain nonlinear

fractional-time partial di¤erential equations in the sense of Caputo. The BYJ method was used

to solve four problems whose di¢ culty levels depended on the nonlinear term introduced, and
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led to more accurate results. The results obtained show that the new method is e¢ cient and

easy to use for �nding approximate solutions for fractional-order partial di¤erential equations in

time. Thus, the proposed method has a signi�cant impact on the way engineering, physics and

other disciplines solve fractional-order equations.

,
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