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Abstract: Laser Beam Machining (LBM) has emerged as a versatile non-conventional 
machining technique widely adopted in aerospace, medical, and automotive industries due 
to its precision and flexibility. The complexity of LBM processes and the demand for high-
quality, resource-efficient manufacturing have driven significant research into optimization 
methods for process parameters. This systematic review analyzes 228 research publications 
from 2003 to 2023, categorizing the literature into traditional optimization techniques, 
multi-criteria decision-making approaches, and advanced computational methods including 
artificial intelligence and machine learning. The review highlights the evolution and 
application of methods such as Design of Experiments (DOE), Taguchi, ANOVA, regression 
models, MOORA, Grey Relational Analysis, and AI-based techniques like artificial neural 
networks and genetic algorithms. The influence of key process parameters-laser power, 
cutting speed, gas pressure, standoff distance, and pulse frequency-on critical responses 
such as surface roughness, material removal rate, kerf width, and heat-affected zone is 
systematically discussed. The paper provides insights into the effectiveness, advantages, and 
limitations of various optimization strategies, identifies current challenges, and suggests 
future research directions for enhancing the performance and sustainability of LBM 
processes. 

Keywords: Laser Beam Machining (LBM), Material Removal Rate (MRR), Surface Roughness 
(SR), Kerf Width, Heat-Affected Zone (HAZ), Dimensional Accuracy, Standoff Distance (SOD), 
Pulse Frequency, Assist Gas Pressure, Focal Length,Nozzle Diameter 

 

1. INTRODUCTION 
Emerging as one of the most flexible non-conventional machining techniques with several 
uses in aerospace, medical, and automotive fields is laser beam machining (LBM). In the 
aerospace, medical, and automotive sectors as well as others LBM finds use (Kharche, 
2024). When the laser beam contacts the material surface, the process consists in material 
removal by melting and vaporization. Using melting and vaporization of metal, Laser Beam 
Machining (LBM) is a non-conventional technique whereby material removal occurs when 
the laser beam comes into touch with the metal surface (Shinde, 2016). The increasing 
complexity of manufacturing needs has made advanced optimization methods necessary to 
improve laser machining operations' efficiency and quality of output. LBM cannot improve 
resource-efficiency or system sustainability without optimization methods. The current 
work attempts to offer a methodical overview of the studies in the field of optimization 
strategies for LBM (Kharche, 2024). Achieving intended machining results depends 
critically on the choice of suitable machining settings. Consequently, choosing the suitable 
machining parameter has become a vital task before beginning the operation (Khan, 2015). 
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Figure.1 Diagram of Laser Beam Machining 

LBM process optimization is a difficult work needing advanced approaches since it contains 
several goals and restrictions. Many process factors like laser power, cutting speed, assist 
gas pressure, pulse frequency, and focal length determine the quality of machined products. 
The machined surface cut by LBM depends on several process factors that influence quality. 
Most importantly, though, are the laser power, cutting speed, assist gas pressure, nozzle 
distance, focus length, pulse frequency and pulse width (Shinde, 2016.). The impact of these 
parameters on surface roughness (SR), material removal rate (MRR), kerf breadth, heat-
affected zone (HAZ), and surface hardness have been thoroughly studied by researchers. 
Surface roughness (SR), material removal rate (MRR), kerf width, heat affected zone 
(HAZ), and surface hardness (Shinde, 2016) are the key performance metrics in LBM, 
though. 

Over the past two decades, the evolution of optimization methods for LBM has changed 
dramatically in response to growing research interest in methodical approaches to ascertain 
the ideal mix of process factors. Reviewed are 228 research publications released overall 
throughout the past 20 years, from 2003 to 2023. Three main sections—i) optimization 
techniques, ii) applications of optimization approaches, and iii) difficulties and future 
directions—Kharche, 2024 classify the literature review Examining their efficacy, limits, 
and future potential in improving machining performance, this paper offers a thorough 
evaluation of the several optimization approaches used to LBM. 

 

2. Traditional Optimization Methods for LBM 
2.1. Design of Experiments (DOE) 

One of the most often used approaches for LBM process parameter optimization is design 
of experiments (DOE). With a limited number of experimental trials, the method helps 
scientists to methodically study the impacts of several parameters. Using design of 
experiments (DOE) analysis improved the laser micro processing method. 17 tests were 
conducted using a Box-Behnken design (BBD) program to look at how laser settings affect 
micro processing results (Mahmoud, 2024). Taguchi's orthogonal array design has been 
very well-known among several DOE methods because its efficiency in parameter 
screening and optimization. 

LBM parameter optimization for several materials and applications has made great use of 
Taguchi technique. Designing experimental trials using Taguchi's L9 orthogonal array 
proved challenging (Manjoth, 2016). This method was used, for example, to investigate the 
effects of standoff distance, cutting speed, and gas pressure on surface roughness, 
volumetric material removal rate, and dimensional accuracy in the optimization of laser 
beam machining parameters for Al7075-TiB2 metal matrix composite. We investigated 
optimization and effect of laser machining process parameters on surface roughness, 
volumetric material removal rate (VMRR) and dimensional accuracy of composites. While 
power and nozzle diameter were kept constant with air as assisting gas, standoff distance 
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(SOD) (0.3 - 0.5mm), cutting speed (1000 - 1200 m/hr) and gas pressure (0.5 - 0.7 bar) 
were regarded as changeable input factors at three distinct levels. Using Minitab software 
(version 16), the main effects plot for signal noise ratio (S/N ratio) calculated optimized 
process parameters for surface roughness, volumetric material removal rate (VMRR) and 
dimensional accuracy. 

Taguchi method application in LBM optimization has also been applied to several materials 
including titanium alloys, HSLA steel, and Inconel alloys. The machining investigations 
use Taguchi's L18 orthogonal array. The appropriate mix of the LBM process parameters 
is assessed using the MOORA approach (Praveen, 2023). Using Taguchi L9 orthogonal 
array, researchers in a case study on the carbon-dioxide laser beam machining of Inconel 
718 alloy found the ideal setting of process parameters including laser power, cutting speed, 
and gas pressure. The aim of the present work is to find the best values of the process 
parameters including laser power, cutting speed, gas pressure while milling Inconel-718 
material using oxygen gas. The experiment ran on Taguchi L9 orthogonal array. Using laser 
beam machining and the optimal combination of process parameters, a square washer with 
four holes of diameter 8 mm and one hole of dimension 64 mm was machined and obtained 
higher response characteristics computed (Samson, 2020). 

 
Figure 2. Optimize techniques for LBM 

2.2 Analysis of Variance (ANOVA) and Regression Models 

Analysis of variance (ANOVA) has frequently been used in conjunction with other 
optimization techniques to determine the significance of process parameters in LBM.  Using 
Minitab's regression and analysis of variance (ANOVA), the percentage of the effect of 
parameters by taking cutting speed, laser power, and gas power into account.  The results 
of the major effect and optimization graphs indicate that cutting speed is a significant factor 
in defining the surface's roughness (Prakash, 2022).  The method assists researchers in 
prioritizing the most crucial components for optimization by statistically validating the 
impact of each parameter on the response variables. Surface roughness is more influenced 
by laser power and cutting speed than by gas pressure, according to an ANOVA analysis 
of the laser beam cutting machining parameters optimization.  Cutting speed and laser 
power are the most significant factors affecting surface roughness, mostly in comparison to 
gas pressure (Prakash, 2022).  Similarly, in the optimization of Al7075-TiB2 metal matrix 
composite machining, ANOVA results showed that the most significant factor for surface 
roughness was cutting speed (56.38%), which was followed by standoff distance (41.03%) 
and gas pressure (2.6%).  The significant effects of gas pressure, cutting speed, and standoff 
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distance (SOD) on surface roughness, volumetric material removal rate (VMRR), and 
dimensional error were calculated using the analysis of variance (ANOVA) technique.  
According to the results, the most crucial factor for surface roughness is cutting speed 
(56.38%), which is followed by standoff distance (41.03%) and gas pressure (2.6%).   In 
terms of volumetric material removal rate, gas pressure (42.32%) was shown to be the most 
significant factor, followed by cutting speed (33.60%) and standoff distance (24.06%).   For 
volumetric material removal (VMRR), gas pressure (42.32%) is the most crucial factor, 
followed by cutting speed (33.60%) and standoff distance (24.06%).   Menjoth (2016). 

In LBM, regression models have also been used extensively to construct mathematical 
correlations between process parameters and performance metrics.  Using analysis of 
variance, the combined influence of machining performance measurements is investigated 
to find the significance of the outcome (Praveen, 2023).  These models help to identify ideal 
settings without much trial by allowing prediction of machining results for specific 
parameter combinations.  In the case of HSLA steel machining, surface roughness and kerf 
width were among the response variables and LBM process parameters for which 
regression models were created.  The present work is aimed on examining surface 
roughness and kerf width of HSLA steel under the influence of laser beam machining 
process parameters.  As such, the effect of the factors on machining reactions was 
investigated.  Examined is the surface geometry of the machined surface of the ideal set of 
parameters (Praveen, 2023). 

2.3 MOORA Method and Multi-Criteria Decision Making 

One effective strategy for resolving multi-objective optimization issues in LBM is the 
Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) method.  In order 
to tackle various multi-objective problems that arise in the real-time manufacturing 
industries, the current study investigates a unique technique called multi-objective 
optimization on the basis of ratio analysis (MOORA).  This work focuses on using the 
MOORA approach to solve issues with various criteria in non-traditional machining 
processes (Khan, 2015). 

Wire-Electric Discharge Machining (WEDM), Plasma Arc Cutting (PAC), Electro 
Chemical Micro Machining (ECMM), Electro Chemical Machining (ECM), Abrasive Jet 
Machining (AJM), Abrasive Water Jet Machining (AWJM), Ultrasonic Machining (USM), 
and Laser Beam Machining (LBM) are just a few of the unconventional machining 
processes that have successfully used the technique.  The main focus of this study is on the 
following processes: Abrasive Jet Machining (AJM), Abrasive Water Jet Machining 
(AWJM), Ultrasonic Machining (USM), Laser Beam Machining (LBM), Plasma Arc 
Cutting (PAC), Electro Chemical Micro Machining (ECMM), Electro Chemical Machining 
(ECM), Wire-Electric Discharge Machining (WEDM), and Laser Cutting Process.  The 
choice of appropriate machining parameters is one of nine NTM multi-criteria problems 
that have been examined.  The MOORA method's ideal input variable settings are almost 
identical to those determined by previous researchers (Khan, 2015). 

The MOORA method was used to evaluate the best combination of process parameters, 
while taking into consideration the number of response variables in recent research on the 
optimization of LBM process parameters for HSLA steel. The proper combination of the 
LBM process parameters is evaluated by the MOORA method. To find the significance of 
the result, the sum effect of machining performance measures is analyzed through analysis 
of variance (Praveen, 2023).  The approach allowed multiple objectives, like kerf width and 
surface roughness reduction, to be integrated into a single optimization problem. 

Other multi-criteria decision-making methods like Grey Relational Analysis (GRA) have 
also been widely used for the optimization of LBM parameters. Effect and Optimization of 
Laser Beam Machining Parameters using Taguchi and GRA Method: A Review (Bo, 2014) 
The Grey Relational Analysis method was successfully employed in the laser drilling 
process optimization of AISI 303 material, allowing simultaneous optimization of more 
than one response variable like surface roughness and heat-affected zone. The objective of 
the current study is to maximize surface roughness (Ra) and HAZ in fibre laser drilling of 
AISI 303 material through Taguchi-based grey relational analysis (GRA). Based on the 
GRA technique, the suggested optimum process parameter combination is flushing pressure 
of 30 Pa, laser power of 2000 W and pulse frequency of 1500 Hz for concurrent 
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optimization of Ra and HAZ. Through analysis of variance, the frequency of pulse is found 
to be the most affected process parameters on laser drilling process performance (Reddy, 
2021). 

Table 1. Effect of LBM Process Parameters on Responses 
 

Process Parameter Response(s) Effects and Influences 

Laser Power Surface Roughness (SR), 
MRR, HAZ, Kerf Width 

- Higher power increases MRR 
and kerf width. 

Cutting Speed Surface Roughness, MRR, 
Dimensional Accuracy 

- Higher speed reduces HAZ 
and kerf width. 

Assist Gas Pressure 
MRR, Surface Roughness, 

Kerf Width, HAZ 

- Higher pressure improves 
material removal and reduces 

dross. 
- Excessive pressure may widen 

kerf and HAZ. 

Standoff Distance 
(SOD) 

Surface Roughness, MRR, 
Dimensional Error 

- Optimal SOD improves cut 
quality. 

- Too large or small SOD 
increases surface roughness and 

dimensional error. 

Pulse Frequency 
Surface Roughness, HAZ, 

MRR 

- Higher frequency can decrease 
HAZ and improve finish. 

- Very high frequency may 
reduce MRR. 

Pulse Width/Duration Surface Roughness, HAZ 

- Shorter pulses reduce HAZ 
and improve precision. 

- Longer pulses increase heat 
input and roughness. 

Focal Length 
Kerf Width, Surface 

Roughness 

- Proper focus minimizes kerf 
width and improves finish. 

- Misfocus increases kerf width 
and roughness. 

Nozzle Diameter Kerf Width, Surface Finish 

- Larger diameter may increase 
kerf width. 

- Smaller diameter can improve 
precision but may reduce MRR. 

Material Properties All responses 

- Material type, reflectivity, and 
thermal properties affect 

absorption, MRR, and quality of 
cut. 

3. Advanced Computational and AI/ML Optimization Techniques 

3.1 Artificial Intelligence and Machine Learning Approaches 

The use of artificial intelligence (AI) and machine learning (ML) approaches has 
transformed the process of laser beam machining optimization over the last few years. This 
article discusses the infusion of artificial intelligence (AI) and high-end digital technologies 
into laser processing and their applications for improving precision, efficiency, and process 
control. The research investigates the use of digital twins and machine learning (ML) in the 
optimization of laser machining, minimizing defects, and enhancing laser–material 
interaction analysis. Focus is given to AI's potential for additive manufacturing and 
microprocessing, especially real-time monitoring, defect prediction, and parameter 
optimization (Murzin, 2024). These sophisticated computational techniques have several 
benefits compared to standard optimization methods, especially when dealing with 
complex, non-linear relationships between machining results and process parameters. 

Artificial Neural Networks (ANNs) have been applied effectively for modeling and 
optimization of different aspects of LBM processes. In laser processing, though, there is a 
nonlinear relationship between process parameters and the quality of processing, which is 
quite complicated, such that it is difficult to build high-accuracy predictive models, while 
the inner link between these two aspects is still not fully exposed. Against this background, 
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this research proposes the application of machine learning methods to investigate the 
intrinsic correlation between processing quality and process parameters and constructs a 5-
13-5 type BP neural network predictive model (Zhang, 2024). In another research dealing 
with carbon fiber reinforced polymer laser machining, researchers created a high-precision 
predictive model based on neural networks to determine laser processing parameters and 
machining quality relationships. To solve the problem of thermal damage caused by laser 
processing of carbon fiber reinforced polymer (CFRP), researchers have carried out an 
optimization study of process parameters in laser processing of CFRP. Their objective is to 
clarify the correlation between process parameters and processing quality to reduce thermal 
damage (Zhang, 2024). The back-propagation neural network model showed good 
prediction accuracy, with average errors of 5% for surface heat-affected zone, 2.9% for 
groove width, 5.9% for cross-sectional heat-affected zone, 1.8% for groove depth, and 4.5% 
for aspect ratio. The findings reveal that the BP neural network prediction model produces 
average errors of 5% in surface heat-affected zone (HAZ), 2.9% in groove width, 5.9% in 
cross-sectional HAZ, 1.8% in groove depth, and 4.5% in aspect ratio, showing a fairly high 
degree of accuracy but with significant fluctuations (Zhang, 2024). 

The integration of genetic algorithms with neural networks has further improved the 
optimization potential for LBM processes. Genetic algorithms are then utilized to optimize 
the weights and thresholds of the BP neural network, and the model is then validated. The 
GA-BP model, in the prediction of surface HAZ and groove width, has errors of 4.5% and 
2.7%, respectively, which are lower compared to the BP model, showing greater predictive 
accuracy (Zhang, 2024). In optimizing kerf width in laser beam machining of titanium alloy, 
scientists combined genetic algorithm with adaptive neuro-fuzzy inference system (GA-
ANFIS) for creating a high-precision prediction model. In this study, adaptive neuro-fuzzy 
inference system (ANFIS) and genetic algorithm tuned ANFIS (GA-ANFIS) were 
employed to forecast the KW on a titanium alloy workpiece during DLBM. Whereas, in 
certain situations, soft computing techniques of the traditional type cannot procure high 
accuracy, in this research study, an attempt was made to present the GA-based ANFIS 
approach for kerf width prediction during groove machining of a titanium alloy workpiece 
employing the DLBM process from experimental data of all possible 50 combinations of 
the process parameters (Ji, 2024). The GA-ANFIS model showed better prediction 
performance with lesser error parameters and greater accuracy than the conventional 
models. The prediction performance of the GA-ANFIS model was improved with less value 
for error parameters (MSE, RMSE, MAE) and greater R2 value of 0.98 for various folds. 
Comparison with other state-of-the-art models also revealed the superiority of the GA-
ANFIS predictive model, as its performance was better across all measures (Ji, 2024). 

3.2 Nature-Inspired Optimization Algorithms 

Nature-inspired optimization algorithms have come forward as useful tools for the 
parameter optimization of LBM. Among them, the Artificial Bee Colony (ABC) algorithm 
has shown to be highly effective for finding optimal process parameters in Nd:YAG laser 
beam machining. Nd:YAG laser beam machining (LBM) process holds enormous potential 
for manufacturing complex shaped microproducts with its distinct properties. In actual 
applications, for example, drilling, grooving, cutting, or scribing, the best set of Nd:YAG 
LBM process parameters must be found to offer the required machining performance. In 
this paper, the use of artificial bee colony (ABC) algorithm is utilized to find the best set of 
Nd:YAG LBM process parameters while taking into consideration both single and 
multiobjective optimization of the responses (Mukherjee, 2013). 

ABC algorithm has demonstrated better performance than other population-based 
algorithms like genetic algorithm, particle swarm optimization, and ant colony 
optimization. Comparative analysis with other population-based algorithms like genetic 
algorithm, particle swarm optimization, and ant colony optimization algorithm validates the 
global usability and acceptability of ABC algorithm for parametric optimization. In this 
algorithm, information exchange between the onlooker bees reduces the search iteration for 
global optimum and prevents suboptimal solution generation. Its superiority over the other 
optimization algorithms is also illustrated by the outcomes of two sample paired -tests 
(Mukherjee, 2013). The ability of the algorithm to reduce search iterations for global 
optimum solutions and prevent suboptimal results renders it especially useful for intricate 
LBM parameter optimization problems. 
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Genetic Algorithms (GA) have also been used very widely for multi-objective optimization 
of LBM process parameters. Lastly, the best process parameters for minimum KW and SR, 
obtained from gray relational–based (GRB) multi-response optimization (MRO) technique, 
were 20 W (level 2) laser power, 22 mm (level 5) standoff distance, 300 mm/min (level 5) 
feed rate, 85% (level 5) duty cycle, and 18 kHz (level 3) frequency (Ji, 2024). The 
evolutionary strategy of GA allows the search of enormous parameter spaces and the 
determination of near-optimal solutions for many conflicting objectives, e.g., maximizing 
material removal rate while minimizing surface roughness and heat-affected zone. 

3.3 Digital Twins and Simulation-Based Optimization 

The digital twin concept has appeared as a revolutionary method for optimizing laser 
processing methods. This paper discusses the revolutionary influence of digital engineering 
on photonic technologies, with a focus on developments in laser processing using digital 
models, artificial intelligence (AI), and freeform optics. It offers an extensive overview of 
how these technologies improve efficiency, accuracy, and control in manufacturing 
processes. Digital models play a central role in predicting and optimizing thermal effects in 
laser processing, thus minimizing material deformation and defects (Murzin, 2024). Digital 
twins allow for the development of virtual copies of physical laser machining systems, 
allowing for real-time monitoring, simulation, and optimization of process parameters 
without extensive physical testing. 

Table 2. Categorization of Literature Based on Optimization Techniques in LBM 
 

Advanced 
Computational/AI 

Optimization Technique Applications/Focus 

Traditional Methods 

Design of Experiments (DOE) 
Taguchi Method 

Analysis of Variance 
(ANOVA) 

Regression Models 

Parameter screening, process 
optimization for materials like 

Al7075-TiB2, Inconel 718, 
titanium alloys 

Optimization of SR, MRR, kerf 
width, dimensional accuracy 

Significance analysis of process 
parameters; response 

prioritization 
Predictive modeling of SR, kerf 

width, MRR, etc. 

Multi-Criteria 
Decision Making 

MOORA (Multi-Objective 
Optimization on Ratio 

Analysis) 
Grey Relational Analysis 

(GRA) 
Artificial Neural Networks 

(ANN) 

Multi-objective optimization 
(e.g., minimizing SR & kerf 

width simultaneously) 
Simultaneous optimization of 

SR, HAZ, etc. (e.g., laser 
drilling of AISI 303) 

Predictive modeling and 
optimization of process 

parameters for CFRP, titanium 
alloys, etc. 

Advanced 
Computational/AI 

Genetic Algorithms (GA) 
Hybrid AI Techniques (GA-

ANN, Digital Twins) 
Machine Learning (ML) 

Combined with ANN for 
parameter optimization, 

especially for minimizing HAZ, 
kerf width, etc. 

Real-time monitoring, defect 
prediction, and parameter 

optimization in advanced LBM 
applications 

Data-driven optimization, 
digital twins for process control 

The combination of digital twins with artificial intelligence has greatly improved the 
optimization potential for laser-based manufacturing processes. The combination of AI 
further enhances these models, enhancing productivity and quality in applications like 
micromachining and cladding. Moreover, the integration of AI with freeform optics propels 
laser technology forward by allowing for real-time adaptation and beam profiles that can 
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be tailored, enhancing processing flexibility and minimizing material damage. Digital twin 
utilization is also discussed as one of the principal developments in laser-based 
manufacturing, providing dramatic enhancements in process optimization, defect reduction, 
and system efficiency (Murzin, 2024). By integrating real-time monitoring, machine 
learning, and physics-based modelling, digital twins enable accurate simulations and 
predictions, resulting in more efficient and trustworthy manufacturing practices. By 
integrating real-time monitoring, machine learning, and physics-based modelling, digital 
twins enable accurate simulations and predictions, resulting in more efficient and 
trustworthy manufacturing practices. In general, the combination of digital twins, AI, and 
freeform optics in laser processing represents a remarkable advancement in manufacturing 
technology. These developments altogether increase accuracy, efficiency, and flexibility, 
leading to better product quality and lower operational expenses (Murzin, 2024). 

Simulation optimization methods have also been extensively used for LBM process 
parameter optimization. Researchers have used COMSOL software for theoretical 
calculations to find the distribution of surface and subsurface temperatures in a study on the 
optimization of laser micro/nano processing of silicon and quartz to identify the best laser 
parameters. The COMSOL software was used to make theoretical calculations in order to 
calculate the silicon and quartz surface temperatures and subsurface temperature 
distribution. Maximum temperatures recorded were around 5700 K for silicon and 2630 K 
for quartz. Numerical optimization based on DOE software enhanced the synthesis of 
silicon nanoparticles and quartz microlens, resulting in silicon nanoparticles wavelength 
peak and absorption peak values of 318.2 nm and 0.39, respectively (Mahmoud, 2024). The 
combination of simulation with experimental design of experiments (DOE) analysis has 
been found to be especially useful in improving laser micro processing methods. 

 

4. Material-Specific Optimization Approaches 
 
   4.1 Optimization for Metallic Materials 

Optimization of LBM parameters for metal materials, especially superalloys such as Inconel 
and titanium alloys, has been of interest to researchers due to their broad applications in the 
aerospace and biomedical sectors. For Inconel 718 alloy, which demonstrates excellent 
physical and mechanical properties under high temperatures, researchers have attempted to 
optimize LBM parameters for desired surface finish and material removal rates. Carbon-
dioxide laser beam machining (LBM) machining is applied for machining hard and complex 
shapes which are unimaginable with traditional machining techniques. Inconel 718 has its 
major applications in the manufacturing of high-pressure turbine parts and aerospace 
industry structural components. Inconel 718 alloy contains high physical and mechanical 
properties at higher temperature, Strength-to-density ratio and improved corrosion 
resistance (Samson, 2020). 

By optimization research with Taguchi approach, researchers established the best set of 
process parameters such as cutting speed, laser power, gas pressure, focal point, and pulse 
frequency for reducing surface roughness and increasing material removal rate. The optimal 
value of surface roughness was discovered to be 3.5µm and likewise material removal rate 
to be 45.56 m3/min while operated at cutting speed of 2.1m/min, type of cut as rough, 1mm 
focal point and gas pressure of 4000bar, The influence of input variables on different 
response parameters namely surface roughness (Ra), Heat affected zone thickness (HAZ), 
material removal rate (MRR), Taper, Circularity, hardness were investigated (Samson, 
2020). 

Likewise, in the case of titanium alloys, which have extensive applications in biomedical 
and aeronautical engineering, researchers used sophisticated optimization strategies like 
genetic algorithm tuned adaptive neuro-fuzzy inference system to enhance process 
parameters. In power diode laser beam machining (DLBM) machining, kerf width (KW) 
and surface roughness (SR) play crucial roles while assessing the quality of cutting for the 
machined specimens. Besides establishing the impact of process parameters on these 
variables, it is highly crucial to employ multi-response optimization strategies to them for 
better processing of specimens, particularly for hard-to-machine materials. In the present 
study, adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm-tuned ANFIS 
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(GA-ANFIS) were utilized to model the KW on a titanium alloy workpiece during DLBM. 
Five machining process parameters, i.e., power diode, standoff distance, feed rate, duty 
cycle, and frequency, were employed for model development because they are related to 
KW (Ji, 2024). The best process parameters for minimum kerf width and surface roughness 
were established using multi-response optimization techniques like grey relational analysis. 

Table 3. Materials Used in Laser Machining Applications 
 

Material Industry References 

Al7075-TiBâ‚‚ Metal 
Matrix Composite 

Aerospace, Automotive Manjoth, 2016 

Titanium Alloys Medical, Aerospace Samson, 2020; General Review 
HSLA Steel (High 

Strength Low Alloy) 
Automotive, Structural Praveen, 2023 

Inconel 718 Alloy Aerospace, Power Generation Samson, 2020 
AISI 303 Stainless 

Steel 
General Engineering Bo, 2014; Reddy, 2021 

Carbon Fiber 
Reinforced Polymer 

(CFRP) 
Aerospace, High-Performance Zhang, 2024 

General Metals (e.g., 
Steel, Aluminum, 

Alloys) 
Multiple Industries Shinde, 2016; Kharche, 2024 

 

4.2 Optimization for Ceramics and Composites 

The process optimization of LBM parameters in the case of ceramic and composite 
materials is special, as both involve heterogeneous material composition and distinct 
properties. In alumina ceramics, which are especially known for the high level of corrosion 
and thermal resistance but present difficulties during machining because they are brittle, 
investigators have tested diverse optimization strategies with the goal to improve machining 
quality. Alumina, famous for its excellent resistance to heat and corrosion, offers a tough 
challenge in machining due to its brittleness. However, laser machining has proven to be a 
very appropriate process for handling hard and brittle materials such as alumina. Although 
conventional machining methods can work as well, they tend to require long machining 
times and exceedingly high tool wear rates, which increase the entire machining cost 
(Himawan, 2023). 

Machine learning methods have shown special efficacy in the process optimization of laser 
machining of alumina ceramics. Laser machining is a very versatile non-contact 
manufacturing method that has been used extensively in academia and industry. On account 
of nonlinear light-matter interactions, simulation methods are of utmost importance, as they 
contribute to maximizing the machining quality by providing understanding of the inter-
relations among the laser processing parameters. Conversely, experimental optimization of 
processing parameters suggests a systematic, and therefore time-consuming, exploration of 
the accessible processing parameter space. A smart approach is to utilize machine learning 
(ML) methods to learn the correlation between picosecond laser machining parameters for 
identifying suitable parameter combinations to produce the desired cuts on industrial-grade 
alumina ceramic with deep, smooth and defect-free patterns (Behbahani, 2022). Neural 
networks have been especially effective in the prediction of the connections between laser 
parameters and machining results for ceramics, allowing channel size and surface finish to 
be optimized. Laser parameters like beam amplitude and frequency, scanner passing speed 
and number of passes over the surface, and the vertical distance of the scanner from the 
sample surface are employed in predicting the depth, top width, and bottom width of 
engraved channels utilizing ML models. Due to the intricate relationship among laser 
parameters, it is established that Neural Networks (NN) are the most effective in output 
prediction. Having an ML model that identifies the relationship between the interconnection 
of laser parameters and the dimensions of the engraved channel, one is able to forecast the 
input parameters needed to realize a desired channel geometry. This approach drastically 
lowers the expense and effort of experimental laser machining during the development stage 
without sacrificing accuracy or performance (Behbahani, 2022). 
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For carbon fiber reinforced polymer (CFRP) composites, which are prone to thermal 
damage during laser processing, researchers have emphasized the optimization of process 
parameters to reduce thermal effects while ensuring machining efficiency. To solve the 
problem of thermal damage caused by laser processing of carbon fiber reinforced polymer 
(CFRP), scientists have carried out an optimization study of process parameters in laser 
processing of CFRP. They are trying to explain the correlation between process parameters 
and processing quality to reduce thermal damage. But in laser processing, there is a 
complicated nonlinear relationship between processing quality and process parameters, and 
it is difficult to build high-precision predictive models, although the intrinsic relationship 
between these two factors is still not fully unveiled (Zhang, 2024). Genetic algorithm 
optimized neural networks have been shown to possess great potential in building high-
precision predictive models for optimizing CFRP laser machining. 

 

5. Challenges and Future Directions 
   5.1 Current Limitations in LBM Optimization 

In spite of tremendous progress in optimization methods of laser beam machining, some 
challenges and limitations still remain. The article also considers arising challenges like 
adapting AI models to complex material behaviors and integrating intelligent systems into 
current manufacturing systems (Murzin, 2024). The adaptation of AI models to complex 
material behaviors, especially in heterogeneous and composite materials, is one of the main 
challenges. The non-linear couplings between laser beam and other materials, combined 
with the intricacy of material removal and heat transfer mechanisms, pose challenges in 
establishing universally valid optimization models. 

The incorporation of high-level optimization systems into current manufacturing 
environments is another major challenge. Although issues like the requirement for 
specialized knowledge and investment in new technologies remain, this article highlights 
the substantial benefits of combining computer science with laser processing (Murzin, 
2024). The application of advanced AI-based optimization methods typically involves 
specialized knowledge and high investment in new technologies, which can restrict their 
implementation in small and medium-sized manufacturing companies. 

 
   5.2 Emerging Trends and Future Research Directions 

There are some emerging trends and future areas of research identified in the LBM 
optimization domain. The innovation of the current systematic review article is to provide 
a future area of research direction in the optimization techniques of LBM domain. Due to 
the proposed research, an effective and sustainable LBM with the specified performance 
will be created in the minimum possible timeframe (Kharche, 2024). The merging of real-
time monitoring with adaptive control systems is a promising path for the development of 
robustness and responsiveness in LBM optimization. This paper explores the computer 
science contribution to the improvement of laser processing methods, highlighting the 
revolutionary nature of their merging with manufacturing. It addresses important aspects 
where computational approaches improve the accuracy, flexibility, and efficiency of laser 
operations. With the aid of sophisticated modeling and simulation methods, material 
behavior during laser irradiation was better understood, and process parameters could be 
optimized, along with the reduction of defects. The function of intelligent control systems 
based on machine learning and artificial intelligence was also investigated, illustrating how 
real-time data processing and adjustments result in enhanced process quality and reliability 
(Murzin, 2024). 

Hybrid optimization strategies, blending conventional statistical techniques with 
sophisticated machine learning methods, hold great promise for resolving the multifaceted 
nature of multi-objective optimization issues in LBM. Additionally, machine learning in 
the speeding up of the LAM process optimization and design of new materials is also 
envisioned (Su, 2024). Such hybrid methods are able to tap into the explanatory capabilities 
of statistical techniques and tap into the learning abilities of machine learning algorithms. 

The implementation of transfer learning and federated learning methodologies has the 
potential for creating more generalizable optimization models that can be transferred to 

ISSN NO : 0363-8057

PAGE NO: 84

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 6 2025



various materials and machining environments with little retraining. This paper aims to give 
a summary of ML's role in advancing femtosecond laser machining to a more determinist 
and efficient method. Taking advantage of data from laser parameters and in-situ and ex-
situ imaging of processing results, ML methods—ranging from supervised learning, 
unsupervised learning, to reinforcement learning—can make a significant impact on 
process monitoring, process modeling and prediction, parameter optimisation, and self-
driving beam path planning. Such advances drive femtosecond laser towards a critical tool 
for micro-and nanomanufacturing, allowing precise control over machining results and 
enriching our understanding of the laser machining process (Gao, 2024). Such advanced 
machine learning strategies may be able to effectively minimize the experimental work in 
optimizing LBM parameters for new materials or applications. 

Moreover, advancements in more advanced digital twins and physics-informed neural 
networks present promising directions toward improving the precision and effectiveness of 
simulation-based optimization methods in LBM. Outstanding accomplishments are 
enumerated in numerical modeling, machine learning applications, and geometry 
optimization of optical systems as well as integrating dynamic DOEs with laser systems for 
adaptive beam control. The paper encompasses the creation of sophisticated diffractive 
structures with enhanced properties and novel optimization strategies (Murzin, 2025). 
These sophisticated computational models can couple physical understanding of laser-
material interactions with data-driven learning methods to provide more precise predictions 
of machining results and more efficient optimization of process parameters. 

6. Conclusion 

This systematic review has elaborately discussed the different optimization methods used 
in laser beam machining, from the conventional ones like design of experiments, Taguchi 
method, and ANOVA to cutting-edge computational methodologies like artificial 
intelligence, machine learning, and digital twins. The review has emphasized the 
development of these methods and their usage over different materials and machining 
conditions. 

Conventional optimization techniques, specifically Taguchi's orthogonal array planning and 
ANOVA, remain basic methods for parameter screening and significance testing in LBM 
optimization. They are capable of offering useful information on the relative importance of 
various process parameters and their interactions, allowing optimal parameter combinations 
to be identified with less experimental effort. 

Advanced computational methods, especially AI and ML methodologies, have exhibited 
great promise in tackling the complexity of LBM optimization issues. Neural networks, 
genetic algorithms, and hybrid models have proven to excel in the task of simulating 
intricate non-linear interactions between process factors and machining responses, 
facilitating better prediction and optimization of LBM processes. 

The combination of simulation-based optimization methodologies with digital twins is a 
key breakthrough in LBM optimization, as it allows virtual experimentation and real-time 
process parameter optimization. These methodologies use physics-based models and real-
time monitoring to increase the accuracy, efficiency, and flexibility of laser machining 
processes. 

Material-specific optimization methods have been established to tackle the specific 
challenges related to various materials, such as metals, superalloys, ceramics, and 
composites. These methods consider the unique material properties and machining needs, 
allowing for the creation of application-specific optimization strategies. 

Notwithstanding major strides, there are still challenges with the transfer of AI models to 
intricate material behaviors and the integration of high-level optimization systems within 
current manufacturing systems. Some future research directions include the creation of 
hybrid optimization strategies, transfer learning methods, and more advanced digital twins 
to increase the robustness, generalizability, and efficiency of LBM optimization. 

In summary, the ongoing development of optimization methods in laser beam machining 
has tremendous potential to accelerate precision, efficiency, and sustainability in 
manufacturing operations. By combining the complementary strengths of conventional and 
innovative optimization methods, researchers and practitioners are capable of formulating 
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better approaches to optimizing LBM processes in a wide range of materials and 
applications. 

 

Appendix 
 

A. List of Key Terms and Abbreviations 
Abbreviation Description 

LBM Laser Beam Machining 

MRR Material Removal Rate 

SR Surface Roughness 

HAZ Heat-Affected Zone 

KW Kerf Width 

SOD Standoff Distance 

DOE Design of Experiments 

ANOVA Analysis of Variance 

GRA Grey Relational Analysis 

MOORA Multi-Objective Optimization on the Basis of Ratio Analysis 

ANN Artificial Neural Network 

GA Genetic Algorithm 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ABC Artificial Bee Colony Algorithm 

ML Machine Learning 

AI Artificial Intelligence 

Digital Twin 

A virtual model that mirrors real-world LBM systems for 
simulation and optimization 
 
 

B. Optimization Techniques Categorization 
 
Category Techniques/Models Used 

Traditional Methods 
Taguchi Method, DOE, ANOVA, Regression 
Models 

Multi-Criteria Decision 
Making 

MOORA, GRA 

Artificial Intelligence & 
Machine Learning 

ANN, GA, ANFIS, GA-ANFIS, ML Models 

Nature-Inspired Algorithms 
Artificial Bee Colony (ABC), Particle Swarm 
Optimization (PSO) 

Simulation-Based 
Optimization 

Digital Twins, COMSOL Simulation 

 
C. Key Process Parameters and Effects 

Process 
Parameter 

Influences 

Laser Power ↑ MRR, ↑ KW, ↑ HAZ, ↑ SR 

Cutting Speed 
↑ Dimensional Accuracy, ↓ HAZ, ↓ KW; but ↑ SR if too 
high 

Assist Gas 
Pressure 

↑ MRR, ↓ Dross, ↑ KW & HAZ (if excessive) 

Pulse Frequency ↓ HAZ, ↑ Finish, ↓ MRR (if too high) 

Standoff Distance Affects SR, MRR, and Dimensional Error 
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Process 
Parameter 

Influences 

Pulse Width ↓ HAZ (shorter), ↑ Roughness (longer) 

Focal Length Affects KW and Surface Finish 

Nozzle Diameter Affects Precision and MRR 
 

D. Material Categories Studied 
Material Type Examples / Application Industries 

Metals & Alloys 
Al7075-TiB₂, Inconel 718, HSLA Steel, Titanium 
Alloys 

Polymers & 
Composites 

Carbon Fiber Reinforced Polymer (CFRP) 

Ceramics Alumina Ceramic 

E. Optimization Objectives by Material 
Material Key Optimization Objectives 

Inconel 718 Minimize SR, Maximize MRR, Reduce HAZ 

Titanium Alloys Minimize KW, SR using GA-ANFIS 

CFRP Reduce thermal damage using ANN and ML 

Alumina 
Ceramics 

Achieve smooth channels and precision with minimal 
cracking 
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