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ABSTRACT: 

Data processing has become a crucial task as 
the volume and data complexity continue to grow. 
Distributed data processing frameworks are the 
solution to this issue. The paper-present 
comparative study of popular frameworks like 
Apache Spark, Apache Flint, and Hadoop Map 
Reduce. This is done by expressing and comparing 
the performance, scalability, fault tolerance, and 
architecture of each framework to help businesses 
make informed decisions about their choice of 
framework. The paper begins with a literature 
review and methodology, followed by a 
comprehensive comparative analysis. Apache 
Spark benefits from in-memory processing 
providing high performance and Apache Flintlocks 
on low-latency stream processing. Hadoop Map 
Reduce offers fault tolerance and scalability for 
batch-processing tasks. The analysis concludes that 
both Spark and Flink outperform Map Reduce in 
terms of performance and scalability. Overall, this 
study highlights the strengths and limitations of 
each framework and recommends Spark as the 
current best option due to its maturity, market share, 
and community support. However, we 
acknowledge Flink’s innovative concepts and 
future development possibilities.The choice of the 
framework should be based on specific use cases 
and requirements for performance, fault tolerance, 
and real-time processing. 

Introduction: 

Processing of large amounts of data has 
become a valuable aspect of industry and research, 
necessitating the use of efficient and scalable 
frameworks to handle these tasks. As the volume 
and complexity of information continue to grow, 
efficient and scalable frameworks are required to 
handle the processing tasks. The frameworks are 
intended to ease computing. It involves 
transforming raw data into meaningful information. 
And also, consists of operations like data cleaning, 

visualization, analysis, and aggregation. Traditional 
computational power of one machine [13].  

However, the distributed nature of the 
frameworks allows horizontal scaling by 
introducing more machines to process the data 
overcoming the aforementioned limitation [13] that 
careful planning of resource allocation algorithms 
can result in major performance and cost benefits. 
Fast data processing capabilities of frameworks like 
Spark are helpful from an operational standpoint 
and can potentially save individuals in the 
healthcare industry [6]. Research on predictive 
analytics highlights the continuing value of Map 
Reduce [12], especially for non-time-sensitive 
applications that need precise predictions from big 
datasets. Effectiveness of Spark framework in 
managing complicated data operations is 
demonstrated by the performance evaluation of 
query processing jobs [2], which directly affects 
company insight and decisions. 

While prior studies have explored various 
distributed data processing structures, this article 
offers a novel contribution by conducting an in-
depth comparative study of three widely used 
frameworks: Apache Spark, Apache Flink, and 
Hadoop Map Reduce. Through a rigorous analysis 
of the architecture, performance, scalability, and 
fault tolerance of each framework. The author’s 
aim to provide valuable insights that can guide 
businesses in making informed decisions about 
their choice of data processing platform. By 
synthesizing existing literature and conducting 
comprehensive comparative analyses, the research 
offers a unique perspective on the strengths and 
limitations of each framework, thereby contributing 
to the advancement of knowledge in the field of 
distributed data processing. The scientific 
contribution of the study is that it assesses these 
frameworks, highlights the pros and cons of each of 
them, and makes the necessary recommendations 
for businesses working with the large number of 
processing technologies. 

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 7 2025

ISSN NO : 0363-8057

 PAGE NO: 81



 

         The paper starts with a description of the 
methodology used in the research, particularly 
literature review and comparative analysis. It then 
follows with a comparison analysis where Spark, 
Flink, and Hadoop Map Reduce are compared 
through four criteria mentioned above. The paper 
finishes with a discussion where the results of the 

comparative analysis are discussed. 

Methods and Materials.  

The methodology used in this research is a 
comprehensive literature review and comparative 
analysis of the three technologies that will be 
disscussed. The initial step in this study involves a 
literature review of scholarly articles, research 
papers, and technical reports that are specifically 
focusing on Apache Spark, Apache Flink, and 
Hadoop Map Reduce. The literature review’s goal 
is to establish a solid theoretical foundation and 
gather a deep understanding of the topic such as 
architectural design, features, strengths, limitations, 
and their applications in different scenarios. The 
comparative analysis is conducted in order to 
evaluate, compare three frameworks across 
multiple aspects that include architecture, 
scalability, performance, and fault tolerance. Based 
on the literature review findings, technical 
documentation,white papers, and case studies 
provided by the framework developers and user 
communities comparative analysis is carried out. 

The details of each aspect are explained below. 

Performance: Performance is a key point for any 
software because it affects the costs of running the 
program. The performance of each framework is 
evaluated the factors like execution speed, 
throughput, latency, and resource utilization.  

Benchmarks, experiments, and various empirical 
studies conducted by researchers and industry 
experts are considered to derive meaningful 
insights. 

Scalability:  

The motivation for using distributed data 
processing frameworks is to be able to scale them, 
so it is important to see how this is implemented in 
each framework. The scalability criteria in our 
research were assessed by studying the frameworks’ 
ability to handle large volumes of data and support 
an increasing number of nodes in a distributed 
cluster. We analyzed the frameworks’ scalability 
features, limitations, and real-world use cases to 
evaluate their capacity to scale effectively. 

Fault Tolerance: One of the main criteria for 
modern systems is resilience, so it is important to 
see the differences and similarities between the 
frameworks. The fault tolerance capabilities of the 
frameworks are assessed by analyzing their 
mechanisms for handling failures, fault recovery 
strategies, and data reliability guarantees. The 
literature review provides insights into the fault 
tolerance mechanisms employed by each 
framework. 

Architecture:  

The motivation behind the analysis of 
architectural details understands the differences of 
implementation that could affect the workflow of 
the framework. The architectural decisions 
implemented in the frameworks might give 
advantages or disadvantages to specific use cases 
which will be determined further. 

Literature Review.  

Apache Spark: Prior research has extensively 
explored the capabilities and performance of 
distributed data processing structures. Apache 
Spark offers batch and stream processing, machine 
learning, and graph processing. The studies have 
demonstrated Spark’s ability to process large-scale 
datasets efficiently and its support for real-time 
data analysis [13]. The first figure below (Figure 1) 
represents Apache Spark’s master/worker 
architecture. It means that a driver program 
interacts with a single cluster manager coordinator 
that manages several workers in which executors 
run. The executor can run on the same machine 
also called a horizontal cluster or on separate 
servers which is an example of vertical clustering 

[18]. 

 

 

Fig. 1. Apache Spark Architecture. 

Apache Flink: 

 On the other hand, Apache Flink emphasizes 
streaming data processing and provides robust fault 
tolerance and low-latency processing capabilities. 
Several comparative studies have evaluated Flink's 
performance and highlighted its advantages in 
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handling continuous data streams and its support 
for event time processing [4]. Authors of official 
documentation [17] provides the chart of Apache 
Flink architecture (Figure 2), where Job Manager, 
Resource Manager, Dispatcher, and  

Task Managers builds Apache Flink's architecture. 
And at the same time, task scheduling, failure 
recovery, and checkpoint synchronization are all 
handled by the Job Manager. The Resource 
Manager controls resource supply and allocation in 
the Flink cluster, when a job is submitted, the 
dispatcher offers a REST interface and launches a 
Job Master. Every Job Master oversees the 
execution of a particular Job Graph, which stands 
in for a Flink task [17]. The quantity of task slots 
defines the amount of concurrency, while task 
managers handle task execution, data stream 
buffering, and exchange. Provided design makes 
possible for Apache Flink to perform distributed 
operations, manage resources, and process data 
effectively. 

 

 

        Fig. 2. Apache Flink Architecture. 

Hadoop Map Reduce:  

Hadoop Map Reduce is a framework that 
works with distributed data processing and has 
been extensively studied. It offers fault tolerance, 
scalability, and simplicity for batch processing 
tasks. Different studies have explored its strengths 
in processing large-scale batch workloads and its 
integration with the Hadoop ecosystem [1 1]. The 
Hadoop MapReduce architecture (Figure 3) 
includes a lot of necessary elements. For example, 
the Job Parts responsible for task scheduling, 
monitoring, and job execution. Also, Job Parts 
assigns tasks to the Task Trackers, who then 
perform, reduce, and report on these activities. 

While reducing activities carry out aggregation and 
create the final result, map tasks analyze inserted 
data, and gives intermediate key-value pairs by 
replicating data across numerous nodes, the 
Hadoop Distributed File System (HDFS) provides 
fault tolerance. Data from retrieved from HDFS use 
input format, which divides it into splits for 
mapping activities [5]. The final result of reduction 
operations is written back to HDFS using output. In 
Hadoop Map Reduce, this design offers parallel 
processing, fault tolerance, and effective data 
storage. HDFS divides files into smaller chunks 
that are dispersed among nodes, which are divided 
into name and data nodes and hold responsibility 
for file operations. Mappers and Reducers used in 
Map-reduce and Hadoop computing framework, to 
process data. Key-value pairs produced by mappers 
are sorted, and to minimize input and output they 
also may be pre-processed by a "combiner." The 
large-scale data processing then efficiently 
managed by reducers which combine and process 
these pairs before returning the results to HDFS. 

 

 

 

Fig. 3. Hadoop MapReduce Architecture 

The aim and objectives of the study: The primary 
aim of the research is to compare these three 
distributed data processing frameworks: Apache 
Spark, Apache Flink, and Hadoop Map Reduce. 
The research contrasts them on such parameters as 
architecture, performance, scalability, and fault 
tolerance. The goal is to help organizations make 
informed decisions about the best data processing 
platform for their specific requirements. 

Objectives:  

1.To evaluate performance of each framework 
with factors like execution speed, throughput, 
latency, and resource utilization. 

2.To assess scalability of each framework, 
specifically their ability to handle large volumes of 
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data on increased number of nodes in a distributed 
cluster. 

3.To examine fault tolerance capabilities of 
each framework by analyzing their mechanisms for 
handling failures. 

4.To analyze architectural differences of each 
framework to determine how they  influence their 
performance, and suitability for various use cases. 

Results and Discussion: 

Performance: 

 Spark is known for its in-memory processing 
capabilities, which enable it to perform 
significantly faster than Map Reduce for iterative 
and interactive workloads. By keeping data in 
memory, Spark minimizes disk I/O (Input/Output) 
and allows for efficient data sharing across multiple 
computations [8]. It also provides various high-
level APIs, such as Resilient Distributed Datasets 
(RDDs) and Data Frames, which optimize query 
execution and improve overall performance [18].R 
offers effective distributed processing by enabling 
distributed information to be handled in parallel 
across a cluster, RDDs are intended to improve 
performance [20]. RDDs’ capacity to optimize data 
processing contributes to their performance 
advantages. RDDs take advantage of in-memory 
computing to provide faster access to data than 
disk-based activities. They provide data locality, 
which lowers network costs by allowing data to be 
processed on the same node where it is stored [20]. 
The paper [9] focuses on a critical component of 
big data processing with Apache Spark:maximizing 
data distribution and dependability using block size 
and replication factor setups. The authors 
investigate the influence of various factors on 
application performance, revealing how fine-tuning 
might result in more efficient data processing [9] 

Recent studies also show ongoing improvements in 
Apache Spark's in-memory processing capabilities. 
Author [15] explains Spark ecosystem, highlighting 
its superior computing power over Hadoop. At the 
same time, created Pokémon, an addition for Spark 
that mitigates out-of-memory exceptions and 
reduces garbage collection overheads by managing 
untracked memory consumers in Spark's 
environment. PokéMem's approach to optimizing 
memory usage boosted Spark's efficiency and 
execution speed, and it also shows the framework's 
ongoing development to meet modern data 
processing demands [15]. 

Flink’s main focus is low latency stream processing. 
Its streaming engine can handle large volumes of 
data which is used in fast and responsive analytics 
applications [17]. According to the research, Flink 
and Spark are the two most energy-efficient 
technologies, while Hadoop is the least. This is 
particularly relevant for applications where energy 
consumption is a critical consideration. 
Furthermore, Map Reduce usually shows higher 
latency because of its disk-based operations and 
lack of in-memory computing [5]. Summing up, 
Apache Spark and Flink outperform Hadoop Map 
Reduce in terms of performance. Some studies 
have shown that Apache Spark is able to run almost 
100 times faster than Hadoop Map Reduce [8]. 

Scalability: Spark’s scalability is primarily 
attributed to its resilient distributed datasets and 
directed acyclic graph (DAG) execution model. 
The Apache Spark execution framework relies 
significantly on DAGs, which enable effective and 
reduced data processing workflows. DAGs are a 
logical execution plan that shows the steps taken to 
work with distributed data [7]. RDDs allow Spark 
to efficiently distribute data across a cluster, 
enabling parallel processing [20]. Additionally, 
Spark’s DAG execution model optimizes task 
scheduling and minimizes data shuffling, resulting 
in improved scalability [14]. Flink’s scalability 
stems from its fine-grained dataflow model, which 
enables efficient parallel processing of data streams 
[10]. Flink’s distributed runtime architecture, 
coupled with its support for pipelined processing 
and stateful computations, makes it highly scalable 
[4]. Flink’s ability to handle high throughput 
streaming data allows it effectively to scale out to 
larger clusters.MapReduce’s scalability is limited 
by its batch-oriented, two-stage processing model, 
which involves map and reduce tasks [19]. While 
Map Reduce effectively scales up to handle large 
datasets, it faces challenges with smaller, more 
frequent tasks due to the overhead of launching and 
managing individual map and reduce jobs [5]. 
Additionally,Map-reduce relies heavily on disk I/O, 
which can become a bottleneck when processing 
large volumes of data. In conclusion, Spark and 
Flink demonstrate superior scalability compared to 
Map Reduce. 

Fault Tolerance: Spark employs a fault tolerant 
mechanism called Resilient Distributed Datasets 
(RDDs) to enable fault tolerance [18]. RDDs store 
data in partitions across the cluster, allowing for the 
recompilation of lost partitions in case of failures. 
Spark also supports lineage, a directed acyclic 
graph of transformations applied to RDDs, which 
facilitates the recovery of lost data by re-executing 
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transformations on available partitions [14]. Flink, 
on the other hand, employs a different approach 
called exactly once processing semantics [17]. It 
uses a distributed snapshotting technique to capture 
the state of the processing pipeline at regular 
intervals. In the event of failure, Flink can roll back 
to the latest consistent snapshot and resume 
processing from there, ensuring exactly once 
semantics [10]. Map Reduce offers fault tolerance 
through replication [11 ]. It replicates the input data 
across multiple nodes, ensuring that the failure of 
single node does not lead to data loss. If a node 
fails during computation, the Map Reduce 
framework automatically reschedules the failed 
tasks on other available nodes. Another important 
point here is the use of specialized tools for fault 
tolerance. The Fault Tolerant Real-Time Cloud 
(FTRTC) project is a substantial advancement. 

The primary objective is to establish cloud 
computing infrastructures that can support robust 
real-time applications, similar to those used in 
Industry 4.0. This programme is significant as it 
aims to establish a formalized approach to 
designing real-time cloud applications that can 
effectively handle different levels of fault tolerance 
throughout distributed execution on the cloud [1]. 
Another innovative approach uses machine 
learning to enhance fault tolerance mechanisms in 
the cloud. This model is based on existing 
knowledge to predict fault instances, so it can 
improve the efficiency of task allocation in cloud 
servers [3]. These advancements show a shift 
towards more intelligent fault tolerance 
mechanisms, not only bound to the data-processing 
frameworks’ algorithms but to the intelligent cloud 
environments these frameworks are operating in. 

Architecture:  

All frameworks that were discussed have 
distinct architectures, with their features. For 
instance, a driver application, cluster manager, 
worker nodes and RDDs serve as the main data 
abstraction in Apache Spark’s master-worker 
architecture [18]. It supports in-memory processing 
Spark’s design enables it to run interactive and 
iterative workloads effectively. On the other hand, 
the master-worker design of Apache Flink 
additionally includes a Job Manager, Resource 
Manager, and Task Managers [18]. The 
architecture of Flink includes cutting-edge features 
like event time processing and support for stateful 
computations, and it is intended for both batch and 
stream processing [10]. Flink is suited for real-time 
streaming applications because it places an 
emphasis on low-latency processing and effective 

memory management. The master-worker design of 
Hadoop Map Reduce, on the other hand, uses a Job 
Tracker and Task Trackers together with a master 
worker [19]. It is driven by disk-based processing 
and focuses on massive batch processing. Map 
Reduce uses the map and reduce functions to 
handle data that is stored in the Hadoop Distributed 
File System (HDFS) [19]. Overall, the design of 
Spark's quick in-memory processing, that of Flink 
emphasizes low-latency stream processing, and that 
of Map Reduce emphasizes batch processing with 
disk-based operations. 

Conclusion.  

This study offers a thorough analysis of the 
performance, scalability, fault-tolerance, and 
comparison of Apache Spark, Apache Flink, and 
Hadoop MapReduce architectures. By synthesizing 
existing literature and conducting comprehensive 
comparative analyses, the research offers a unique 
perspective on the strengths and limitations of each 
framework, thereby contributing to the 
advancement of knowledge in the field of 
distributed data processing. The outcomes show 
that switching from Map Reduce technology to 
Apache Spark or Apache Flink can result in 
significant performance gains. When evaluating the 
migration, it is crucial to consider the work needed 
to adapt Map Reduce workloads to the new APIs. 
Due to its maturity, size of the Apache project, 
market share, and community, Spark currently 
stands out as the best framework overall. In 
comparison to Flink, Spark provides a greater set of 
operations and a wider variety of tools. 
Nevertheless, Flink has offered novel concepts that 
have influenced Spark’s advancement. Garbage 
collection cost is reduced by Flink’s use of 
transparent persistent memory management and 
customized object serialization. Furthermore, 
explicit iterators in Flink have demonstrated 
substantial advantages for iterative algorithms, 
leading to noticeably quicker execution times as 
compared to Map Reduce and Spark. The selection 
of a framework is based on particular use cases and 
specifications for performance, fault tolerance, and 
real-time processing. Overall, this analysis clarifies 
the relative merits and contributions of Spark, Flink, 
and Map Reduce, emphasizing Spark as the present 
best option while recognizing Flink’s creative 
concepts and future development possibilities. 
Scientific contribution of the study lies in its 
evaluation of these frameworks, shedding light on 
their relative merits and providing 
recommendations for businesses navigating the 
complex landscape of data processing technologies. 
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