

COMPARATIVE STUDY OF
DISTRIBUTED DATA PROCESSING

FRAMEWORKS
Mrs. P. Rani

Assistant Librarian, Regional Campus Anna University,

Tirunelveli

ABSTRACT:

Data processing has become a crucial task as
the volume and data complexity continue to grow.
Distributed data processing frameworks are the
solution to this issue. The paper-present
comparative study of popular frameworks like
Apache Spark, Apache Flint, and Hadoop Map
Reduce. This is done by expressing and comparing
the performance, scalability, fault tolerance, and
architecture of each framework to help businesses
make informed decisions about their choice of
framework. The paper begins with a literature
review and methodology, followed by a
comprehensive comparative analysis. Apache
Spark benefits from in-memory processing
providing high performance and Apache Flintlocks
on low-latency stream processing. Hadoop Map
Reduce offers fault tolerance and scalability for
batch-processing tasks. The analysis concludes that
both Spark and Flink outperform Map Reduce in
terms of performance and scalability. Overall, this
study highlights the strengths and limitations of
each framework and recommends Spark as the
current best option due to its maturity, market share,
and community support. However, we
acknowledge Flink’s innovative concepts and
future development possibilities.The choice of the
framework should be based on specific use cases
and requirements for performance, fault tolerance,
and real-time processing.

Introduction:

Processing of large amounts of data has
become a valuable aspect of industry and research,
necessitating the use of efficient and scalable
frameworks to handle these tasks. As the volume
and complexity of information continue to grow,
efficient and scalable frameworks are required to
handle the processing tasks. The frameworks are
intended to ease computing. It involves
transforming raw data into meaningful information.
And also, consists of operations like data cleaning,

visualization, analysis, and aggregation. Traditional
computational power of one machine [13].

However, the distributed nature of the
frameworks allows horizontal scaling by
introducing more machines to process the data
overcoming the aforementioned limitation [13] that
careful planning of resource allocation algorithms
can result in major performance and cost benefits.
Fast data processing capabilities of frameworks like
Spark are helpful from an operational standpoint
and can potentially save individuals in the
healthcare industry [6]. Research on predictive
analytics highlights the continuing value of Map
Reduce [12], especially for non-time-sensitive
applications that need precise predictions from big
datasets. Effectiveness of Spark framework in
managing complicated data operations is
demonstrated by the performance evaluation of
query processing jobs [2], which directly affects
company insight and decisions.

While prior studies have explored various
distributed data processing structures, this article
offers a novel contribution by conducting an in-
depth comparative study of three widely used
frameworks: Apache Spark, Apache Flink, and
Hadoop Map Reduce. Through a rigorous analysis
of the architecture, performance, scalability, and
fault tolerance of each framework. The author’s
aim to provide valuable insights that can guide
businesses in making informed decisions about
their choice of data processing platform. By
synthesizing existing literature and conducting
comprehensive comparative analyses, the research
offers a unique perspective on the strengths and
limitations of each framework, thereby contributing
to the advancement of knowledge in the field of
distributed data processing. The scientific
contribution of the study is that it assesses these
frameworks, highlights the pros and cons of each of
them, and makes the necessary recommendations
for businesses working with the large number of
processing technologies.

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 7 2025

ISSN NO : 0363-8057

 PAGE NO: 81

 The paper starts with a description of the
methodology used in the research, particularly
literature review and comparative analysis. It then
follows with a comparison analysis where Spark,
Flink, and Hadoop Map Reduce are compared
through four criteria mentioned above. The paper
finishes with a discussion where the results of the

comparative analysis are discussed.

Methods and Materials.

The methodology used in this research is a
comprehensive literature review and comparative
analysis of the three technologies that will be
disscussed. The initial step in this study involves a
literature review of scholarly articles, research
papers, and technical reports that are specifically
focusing on Apache Spark, Apache Flink, and
Hadoop Map Reduce. The literature review’s goal
is to establish a solid theoretical foundation and
gather a deep understanding of the topic such as
architectural design, features, strengths, limitations,
and their applications in different scenarios. The
comparative analysis is conducted in order to
evaluate, compare three frameworks across
multiple aspects that include architecture,
scalability, performance, and fault tolerance. Based
on the literature review findings, technical
documentation,white papers, and case studies
provided by the framework developers and user
communities comparative analysis is carried out.

The details of each aspect are explained below.

Performance: Performance is a key point for any
software because it affects the costs of running the
program. The performance of each framework is
evaluated the factors like execution speed,
throughput, latency, and resource utilization.

Benchmarks, experiments, and various empirical
studies conducted by researchers and industry
experts are considered to derive meaningful
insights.

Scalability:

The motivation for using distributed data
processing frameworks is to be able to scale them,
so it is important to see how this is implemented in
each framework. The scalability criteria in our
research were assessed by studying the frameworks’
ability to handle large volumes of data and support
an increasing number of nodes in a distributed
cluster. We analyzed the frameworks’ scalability
features, limitations, and real-world use cases to
evaluate their capacity to scale effectively.

Fault Tolerance: One of the main criteria for
modern systems is resilience, so it is important to
see the differences and similarities between the
frameworks. The fault tolerance capabilities of the
frameworks are assessed by analyzing their
mechanisms for handling failures, fault recovery
strategies, and data reliability guarantees. The
literature review provides insights into the fault
tolerance mechanisms employed by each
framework.

Architecture:

The motivation behind the analysis of
architectural details understands the differences of
implementation that could affect the workflow of
the framework. The architectural decisions
implemented in the frameworks might give
advantages or disadvantages to specific use cases
which will be determined further.

Literature Review.

Apache Spark: Prior research has extensively
explored the capabilities and performance of
distributed data processing structures. Apache
Spark offers batch and stream processing, machine
learning, and graph processing. The studies have
demonstrated Spark’s ability to process large-scale
datasets efficiently and its support for real-time
data analysis [13]. The first figure below (Figure 1)
represents Apache Spark’s master/worker
architecture. It means that a driver program
interacts with a single cluster manager coordinator
that manages several workers in which executors
run. The executor can run on the same machine
also called a horizontal cluster or on separate
servers which is an example of vertical clustering

[18].

Fig. 1. Apache Spark Architecture.

Apache Flink:

 On the other hand, Apache Flink emphasizes
streaming data processing and provides robust fault
tolerance and low-latency processing capabilities.
Several comparative studies have evaluated Flink's
performance and highlighted its advantages in

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 7 2025

ISSN NO : 0363-8057

 PAGE NO: 82

handling continuous data streams and its support
for event time processing [4]. Authors of official
documentation [17] provides the chart of Apache
Flink architecture (Figure 2), where Job Manager,
Resource Manager, Dispatcher, and

Task Managers builds Apache Flink's architecture.
And at the same time, task scheduling, failure
recovery, and checkpoint synchronization are all
handled by the Job Manager. The Resource
Manager controls resource supply and allocation in
the Flink cluster, when a job is submitted, the
dispatcher offers a REST interface and launches a
Job Master. Every Job Master oversees the
execution of a particular Job Graph, which stands
in for a Flink task [17]. The quantity of task slots
defines the amount of concurrency, while task
managers handle task execution, data stream
buffering, and exchange. Provided design makes
possible for Apache Flink to perform distributed
operations, manage resources, and process data
effectively.

 Fig. 2. Apache Flink Architecture.

Hadoop Map Reduce:

Hadoop Map Reduce is a framework that
works with distributed data processing and has
been extensively studied. It offers fault tolerance,
scalability, and simplicity for batch processing
tasks. Different studies have explored its strengths
in processing large-scale batch workloads and its
integration with the Hadoop ecosystem [1 1]. The
Hadoop MapReduce architecture (Figure 3)
includes a lot of necessary elements. For example,
the Job Parts responsible for task scheduling,
monitoring, and job execution. Also, Job Parts
assigns tasks to the Task Trackers, who then
perform, reduce, and report on these activities.

While reducing activities carry out aggregation and
create the final result, map tasks analyze inserted
data, and gives intermediate key-value pairs by
replicating data across numerous nodes, the
Hadoop Distributed File System (HDFS) provides
fault tolerance. Data from retrieved from HDFS use
input format, which divides it into splits for
mapping activities [5]. The final result of reduction
operations is written back to HDFS using output. In
Hadoop Map Reduce, this design offers parallel
processing, fault tolerance, and effective data
storage. HDFS divides files into smaller chunks
that are dispersed among nodes, which are divided
into name and data nodes and hold responsibility
for file operations. Mappers and Reducers used in
Map-reduce and Hadoop computing framework, to
process data. Key-value pairs produced by mappers
are sorted, and to minimize input and output they
also may be pre-processed by a "combiner." The
large-scale data processing then efficiently
managed by reducers which combine and process
these pairs before returning the results to HDFS.

Fig. 3. Hadoop MapReduce Architecture

The aim and objectives of the study: The primary
aim of the research is to compare these three
distributed data processing frameworks: Apache
Spark, Apache Flink, and Hadoop Map Reduce.
The research contrasts them on such parameters as
architecture, performance, scalability, and fault
tolerance. The goal is to help organizations make
informed decisions about the best data processing
platform for their specific requirements.

Objectives:

1.To evaluate performance of each framework
with factors like execution speed, throughput,
latency, and resource utilization.

2.To assess scalability of each framework,
specifically their ability to handle large volumes of

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 7 2025

ISSN NO : 0363-8057

 PAGE NO: 83

data on increased number of nodes in a distributed
cluster.

3.To examine fault tolerance capabilities of
each framework by analyzing their mechanisms for
handling failures.

4.To analyze architectural differences of each
framework to determine how they influence their
performance, and suitability for various use cases.

Results and Discussion:

Performance:

 Spark is known for its in-memory processing
capabilities, which enable it to perform
significantly faster than Map Reduce for iterative
and interactive workloads. By keeping data in
memory, Spark minimizes disk I/O (Input/Output)
and allows for efficient data sharing across multiple
computations [8]. It also provides various high-
level APIs, such as Resilient Distributed Datasets
(RDDs) and Data Frames, which optimize query
execution and improve overall performance [18].R
offers effective distributed processing by enabling
distributed information to be handled in parallel
across a cluster, RDDs are intended to improve
performance [20]. RDDs’ capacity to optimize data
processing contributes to their performance
advantages. RDDs take advantage of in-memory
computing to provide faster access to data than
disk-based activities. They provide data locality,
which lowers network costs by allowing data to be
processed on the same node where it is stored [20].
The paper [9] focuses on a critical component of
big data processing with Apache Spark:maximizing
data distribution and dependability using block size
and replication factor setups. The authors
investigate the influence of various factors on
application performance, revealing how fine-tuning
might result in more efficient data processing [9]

Recent studies also show ongoing improvements in
Apache Spark's in-memory processing capabilities.
Author [15] explains Spark ecosystem, highlighting
its superior computing power over Hadoop. At the
same time, created Pokémon, an addition for Spark
that mitigates out-of-memory exceptions and
reduces garbage collection overheads by managing
untracked memory consumers in Spark's
environment. PokéMem's approach to optimizing
memory usage boosted Spark's efficiency and
execution speed, and it also shows the framework's
ongoing development to meet modern data
processing demands [15].

Flink’s main focus is low latency stream processing.
Its streaming engine can handle large volumes of
data which is used in fast and responsive analytics
applications [17]. According to the research, Flink
and Spark are the two most energy-efficient
technologies, while Hadoop is the least. This is
particularly relevant for applications where energy
consumption is a critical consideration.
Furthermore, Map Reduce usually shows higher
latency because of its disk-based operations and
lack of in-memory computing [5]. Summing up,
Apache Spark and Flink outperform Hadoop Map
Reduce in terms of performance. Some studies
have shown that Apache Spark is able to run almost
100 times faster than Hadoop Map Reduce [8].

Scalability: Spark’s scalability is primarily
attributed to its resilient distributed datasets and
directed acyclic graph (DAG) execution model.
The Apache Spark execution framework relies
significantly on DAGs, which enable effective and
reduced data processing workflows. DAGs are a
logical execution plan that shows the steps taken to
work with distributed data [7]. RDDs allow Spark
to efficiently distribute data across a cluster,
enabling parallel processing [20]. Additionally,
Spark’s DAG execution model optimizes task
scheduling and minimizes data shuffling, resulting
in improved scalability [14]. Flink’s scalability
stems from its fine-grained dataflow model, which
enables efficient parallel processing of data streams
[10]. Flink’s distributed runtime architecture,
coupled with its support for pipelined processing
and stateful computations, makes it highly scalable
[4]. Flink’s ability to handle high throughput
streaming data allows it effectively to scale out to
larger clusters.MapReduce’s scalability is limited
by its batch-oriented, two-stage processing model,
which involves map and reduce tasks [19]. While
Map Reduce effectively scales up to handle large
datasets, it faces challenges with smaller, more
frequent tasks due to the overhead of launching and
managing individual map and reduce jobs [5].
Additionally,Map-reduce relies heavily on disk I/O,
which can become a bottleneck when processing
large volumes of data. In conclusion, Spark and
Flink demonstrate superior scalability compared to
Map Reduce.

Fault Tolerance: Spark employs a fault tolerant
mechanism called Resilient Distributed Datasets
(RDDs) to enable fault tolerance [18]. RDDs store
data in partitions across the cluster, allowing for the
recompilation of lost partitions in case of failures.
Spark also supports lineage, a directed acyclic
graph of transformations applied to RDDs, which
facilitates the recovery of lost data by re-executing

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 7 2025

ISSN NO : 0363-8057

 PAGE NO: 84

transformations on available partitions [14]. Flink,
on the other hand, employs a different approach
called exactly once processing semantics [17]. It
uses a distributed snapshotting technique to capture
the state of the processing pipeline at regular
intervals. In the event of failure, Flink can roll back
to the latest consistent snapshot and resume
processing from there, ensuring exactly once
semantics [10]. Map Reduce offers fault tolerance
through replication [11]. It replicates the input data
across multiple nodes, ensuring that the failure of
single node does not lead to data loss. If a node
fails during computation, the Map Reduce
framework automatically reschedules the failed
tasks on other available nodes. Another important
point here is the use of specialized tools for fault
tolerance. The Fault Tolerant Real-Time Cloud
(FTRTC) project is a substantial advancement.

The primary objective is to establish cloud
computing infrastructures that can support robust
real-time applications, similar to those used in
Industry 4.0. This programme is significant as it
aims to establish a formalized approach to
designing real-time cloud applications that can
effectively handle different levels of fault tolerance
throughout distributed execution on the cloud [1].
Another innovative approach uses machine
learning to enhance fault tolerance mechanisms in
the cloud. This model is based on existing
knowledge to predict fault instances, so it can
improve the efficiency of task allocation in cloud
servers [3]. These advancements show a shift
towards more intelligent fault tolerance
mechanisms, not only bound to the data-processing
frameworks’ algorithms but to the intelligent cloud
environments these frameworks are operating in.

Architecture:

All frameworks that were discussed have
distinct architectures, with their features. For
instance, a driver application, cluster manager,
worker nodes and RDDs serve as the main data
abstraction in Apache Spark’s master-worker
architecture [18]. It supports in-memory processing
Spark’s design enables it to run interactive and
iterative workloads effectively. On the other hand,
the master-worker design of Apache Flink
additionally includes a Job Manager, Resource
Manager, and Task Managers [18]. The
architecture of Flink includes cutting-edge features
like event time processing and support for stateful
computations, and it is intended for both batch and
stream processing [10]. Flink is suited for real-time
streaming applications because it places an
emphasis on low-latency processing and effective

memory management. The master-worker design of
Hadoop Map Reduce, on the other hand, uses a Job
Tracker and Task Trackers together with a master
worker [19]. It is driven by disk-based processing
and focuses on massive batch processing. Map
Reduce uses the map and reduce functions to
handle data that is stored in the Hadoop Distributed
File System (HDFS) [19]. Overall, the design of
Spark's quick in-memory processing, that of Flink
emphasizes low-latency stream processing, and that
of Map Reduce emphasizes batch processing with
disk-based operations.

Conclusion.

This study offers a thorough analysis of the
performance, scalability, fault-tolerance, and
comparison of Apache Spark, Apache Flink, and
Hadoop MapReduce architectures. By synthesizing
existing literature and conducting comprehensive
comparative analyses, the research offers a unique
perspective on the strengths and limitations of each
framework, thereby contributing to the
advancement of knowledge in the field of
distributed data processing. The outcomes show
that switching from Map Reduce technology to
Apache Spark or Apache Flink can result in
significant performance gains. When evaluating the
migration, it is crucial to consider the work needed
to adapt Map Reduce workloads to the new APIs.
Due to its maturity, size of the Apache project,
market share, and community, Spark currently
stands out as the best framework overall. In
comparison to Flink, Spark provides a greater set of
operations and a wider variety of tools.
Nevertheless, Flink has offered novel concepts that
have influenced Spark’s advancement. Garbage
collection cost is reduced by Flink’s use of
transparent persistent memory management and
customized object serialization. Furthermore,
explicit iterators in Flink have demonstrated
substantial advantages for iterative algorithms,
leading to noticeably quicker execution times as
compared to Map Reduce and Spark. The selection
of a framework is based on particular use cases and
specifications for performance, fault tolerance, and
real-time processing. Overall, this analysis clarifies
the relative merits and contributions of Spark, Flink,
and Map Reduce, emphasizing Spark as the present
best option while recognizing Flink’s creative
concepts and future development possibilities.
Scientific contribution of the study lies in its
evaluation of these frameworks, shedding light on
their relative merits and providing
recommendations for businesses navigating the
complex landscape of data processing technologies.

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 7 2025

ISSN NO : 0363-8057

 PAGE NO: 85

References:

[1] Abeni L., Andreoli R., Gustafsson H., Mini R.,
Cucinotta T. Fault Tolerance in Real-Time Cloud
Computing // Proc. of the 2023 I E E E 26th
International Symposium on Real-Time Distributed
Computing (ISORC). – 2023. – P. 170-175;

[2] Azhir E., Hosseinzadeh M., Khan F., Mosavi A.
Performance Evaluation of Query Plan
Recommendation with Apache Hadoop and
Apache Spark // Mathematics.– 2022. – Vol. 10,
No. 19. – P. 3517;

[3] Babu P. R., Jimalo K. M., Gadiparthi M.,
Kumar K. R. N. K. DistributedConsensus and Fault
Tolerance Mechanisms Using Distributed Machine
Learning //Proc. of the 2023 International
Conference on Disruptive Technologies (ICDT). –
2023. – P. 11 9-123;

[4] Carbone P., Katsifodimos A., Kth K., Sweden
S., Ewen S., Markl V., Haridi S.,Tzoumas K.
Apache Flink: Stream and batch processing in a
single engine // I E E E Data Engineering Bulletin.
– 2015. – Vol. 38;

[5] Ghazi M. R., Gangodkar D. Hadoop,
MapReduce and HDFS: A developer'sperspective //
Elsevier B.V. – 2015. – Vol. 48. – P. 45–50;

[6] George M. M., Rasmi P. S. Performance
Comparison of Apache Hadoop and Apache Spark
for COVID-19 data sets // Proc. of the 2022 4th
International Conference on Smart Systems and
Inventive Technology (ICSSIT). – 2022;Institute of
Electrical, Electronics, and Engineers et al.
Symposium on Colossals

[7] Data Analysis and Networking (CDAN). – 2016

[8] Jaggi H. S., Kadam S. S. Integration of Spark
framework in supply chain management // Procedia
Computer Science. – 2016. – Vol. 79. – P. 1013–
1020;

[9] Joshi B. Y., Shankar P., Sawai D. Performance
Tuning Of Apache Spark Framework In Big Data
Processing with Respect To Block Size And
Replication Factor

[10] Katsifodimos A., Schelter S. Apache Flink:
Stream analytics at scale // Proc. of the 2016 I E E
E International Conference on Cloud Engineering
Workshop (IC2EW).

[11] Merla P., Liang Y. Data analysis using
Hadoop MapReduce environment// Proc.of the
2017 I E E E International Conference on Big Data
(Big Data). – 2017. – P.4783–4785;

[12] Natesan P., Sathishkumar V. E., Mathivanan S.
K., Venkatasen M., Jayagopal P., Allayear S. M. A
Distributed Framework for Predictive Analytics
Using Big Data and MapReduce Parallel
Programming // Mathematical Problems in
Engineering. –2023. – P. 1–10;

[13] Salloum S., Dautov R., Chen X., Peng P. X.,
Huang J. Z. Big data analytics on Apache Spark //
International Journal of Data Science and Analytics.
– 2016. – Vol. 1,No. 3–4. – P. 145–164;

[14] Shaikh E., Mohiuddin I., Alufaisan Y., Nahvi
I. Apache Spark: A big data

processing engine // Proc. of the 2019 2nd I E E E
Middle East and North Africa Communications
Conference (MENACOMM). – 2019. – P. 1–6;

[15] Tran Q., Nguyen B., Nguyen L., Nguyen O.
Big Data Processing With Apache Spark // Tra
Vinh University Journal Of Science. – 2023;

[16] Ullah F., Dhingra S., Xia X., Babar M. A.
Evaluation of distributed data processing
frameworks in hybrid clouds // Journal of Network
and Computer Applications. – 2024. – Vol. 224. –
P. 103837;

[17] Apache Software Foundation. Apache Flink
Documentation. – 2024. –Available
at:https://nightlies.apache.org/flink/flink-docs-
stable/;– 2016. – P. 193–193;Apache Software
Foundation. Apache Spark Documentation. – 2023.
Available at: https://spark.apache.org;

[18] Aziz K., Zaidouni D., Bellafkih M. Big Data
Optimisation Among R D D s Persistence in
Apache Spark// Communications in Computer and
Information Science.– 2018. – P. 29–40

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 7 2025

ISSN NO : 0363-8057

 PAGE NO: 86

