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Abstract

The reliability of electrical power transmission
systems is crucial for the stability of power grids
and the continuous supply of electricity. Faults in
transmission lines, such as short circuits and open
conductors, can cause severe disruptions if not
detected and classified accurately and promptly.
Traditional  protection methods often lack
adaptability and speed, especially under dynamic
load and system conditions. This paper presents the
application of Artificial Neural Networks (ANNSs)
for fault detection and classification in high-voltage
transmission lines. ANNs, due to their ability to
model complex nonlinear relationships and learn
from data, offer a powerful alternative to
conventional techniques. The proposed model is
trained using simulated fault data under various
conditions, including different fault types, locations,
and fault resistances. Results demonstrate that the
ANN-based system achieves high accuracy in
identifying fault types and their locations, even
under noisy or uncertain conditions. The
implementation of ANNs enhances the intelligence,
reliability, and speed of modern power system
protection schemes.

Keywords—Transmission line faults, artificial
neural networks (ANNS), fault classification, power
system protection, intelligent systems.

Introduction

The reliable operation of power transmission lines
is critical to the stability and efficiency of electrical
power systems. However, these lines are prone to
various types of faults—such as short circuits, open
circuits, and ground faults—that can disrupt power
supply, damage equipment, and even lead to large-
scale Dblackouts if not detected and addressed
promptly. Traditional fault detection techniques,
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which rely on impedance measurement, traveling
waves, or manual inspection, often suffer from
limitations in speed, accuracy, and adaptability to
changing system conditions.

In recent years, Artificial Neural Networks (ANNS)
have emerged as a powerful tool for enhancing fault
detection in transmission lines. ANNs are
computational models inspired by the human brain,
capable of learning complex patterns and
relationships from data. By training ANNs on
historical fault data and system parameters, it is
possible to develop models that can accurately
identify and classify different types of faults in real
time.

The application of ANNs in fault detection offers
several advantages, including faster response times,
improved accuracy, adaptability to nonlinear and
dynamic system behaviors, and reduced dependency
on extensive mathematical modeling. This
intelligent approach can significantly enhance the
reliability of power systems and facilitate more
effective maintenance and protection strategies.

This paper (or project) explores the implementation
of ANN-based techniques for detecting and
classifying faults in transmission lines, aiming to
contribute to the development of more robust and
intelligent fault monitoring systems in modern
electrical grids.
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FAULT DETECTION IN TRANSMISSION LINES
USING ARTIFICIAL NEURAL NETWORKS

Fault Detection
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Overview of Artificial Neural Networks

Artificial  Neural  Networks (ANNs) are
computational models inspired by the biological
structure and functioning of the human brain. They
consist of interconnected layers of nodes (neurons),
where each connection has an associated weight and
bias. The architecture typically includes an input
layer, one or more hidden layers, and an output
layer. Through a process called training, ANNSs
learn to map input data to desired outputs by
adjusting the weights and biases using learning
algorithms, such as back propagation and gradient
descent.

ANNs are particularly effective in modeling
complex, nonlinear relationships that are difficult to
capture using traditional analytical methods. Their
ability to generalize from examples makes them
well-suited for tasks involving pattern recognition,
classification, prediction, and anomaly detection.

In power system applications, ANNs have been
widely adopted for load forecasting, fault detection,
system stability analysis, and control system design.
Their adaptability to changing system dynamics and
robustness to noise make them a valuable tool for
real-time monitoring and decision-making. The use
of ANNs in electrical engineering continues to
grow, especially with  advancements in
computational power and the availability of large
datasets for training.

ANNs consist of layers of interconnected nodes
(neurons) that process input data through weighted
connections. The primary components of an ANN
include:
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e Input layer: Receives raw or preprocessed
fault data (e.g., voltage, current).

e Hidden layers: Learn complex patterns
through activation functions (e.g., ReLU,
sigmoid).

e Output layer: Provides fault classification
results.

ANNs are trained using back propagation and
optimization algorithms like stochastic gradient
descent (SGD) or Adam.

Types of Faults Considered

Single Line-to-Ground (LG)
Line-to-Line (LL)

Double Line-to-Ground (LLG)
Three-Phase Fault (LLL or LLLG)
High-Impedance Faults

Data Acquisition and Preprocessing

Accurate fault detection using Artificial Neural
Networks (ANNSs) relies heavily on high-quality
input data that captures the electrical behavior of
transmission lines during normal and fault
conditions. This section outlines the procedures
used for data acquisition and preprocessing to
prepare the input features for effective ANN
training and evaluation.

A. Data Acquisition

The dataset for training the ANN model was
generated through simulation of various fault
conditions using power system analysis software
such as MATLAB/Simulink or PSCAD. The
simulated power system includes a three-phase
transmission line subjected to different types of
faults, such as:

e Line-to-Ground (L-G)

e Line-to-Line (L-L)

e Double Line-to-Ground (L-L-G)

e Three-phase (L-L-L) faults

Each fault type is simulated at various locations
along the line, with varying fault resistances and
inception angles. Voltage and current signals from
all three phases are recorded at a fixed sampling
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rate, typically between 2 kHz and 10 kHz, to
capture transient behaviors accurately.

B. Feature Extraction

The raw voltage and current signals are processed to
extract relevant features that serve as inputs to the

ANN. Common feature extraction techniques
include:
e Peak and RMS values
e Harmonic content
e Fourier transform components (e.g.,
DFT)

e Wauvelet transform coefficients
e Zero-sequence and positive-sequence
components

These features are selected to highlight variations in
electrical quantities that correspond to different
fault types and severities.

C. Data Normalization

To ensure uniformity and enhance the training
efficiency of the ANN, all input features are
normalized. Normalization techniques such as min-
max scaling or z-score standardization are applied
to bring all feature values within a fixed range (e.g.,
[0, 1]) or to zero mean and unit variance. This
prevents features with larger magnitudes from
dominating the learning process.

D. Dataset Partitioning
The complete dataset is divided into three subsets:

e Training Set (70%0): Used to train the ANN
model.

o Validation Set (15%): Used to tune
hyperparameters and prevent overfitting.

e Testing Set (15%): Used to evaluate the
final model performance on unseen data.

This partitioning ensures that the model generalizes
well and performs reliably under different operating
conditions.

Preprocessing steps also includes:
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e Noise filtering
Kalman filters
e Normalization to scale features between 0
and 1
o Feature extraction using techniques such
as:
o Discrete Fourier Transform (DFT)
o Wavelet Transform
o Energy and entropy metrics

using Butterworth or

ANN Architecture for Fault Detection
A typical ANN for fault detection includes:

e Input layer: 10-30 neurons (based on
selected features)

o Hidden layers: 1-3 layers with 20-100
neurons each

e Output layer: Multi-class softmax output
for fault classification

The Artificial Neural Network (ANN) architecture
designed for fault detection in transmission lines is
structured to accurately classify and locate faults
based on input signals derived from the power
system. The architecture typically consists of three
main layers: an input layer, one or more hidden
layers, and an output layer.

A. Input Layer

The input layer receives pre-processed features such
as voltage and current samples from various phases
(R, Y, B) at specific sampling intervals. These
features are extracted using techniques such as
Discrete Fourier Transform (DFT) or wavelet
transforms to emphasize the fault signatures and
reduce noise. The number of neurons in the input
layer corresponds to the number of features used for
training the network.

B. Hidden Layers

One or more hidden layers are employed to capture
the nonlinear relationships between the input signals
and the output classes (fault types). Each neuron in
the hidden layers applies an activation function—
typically a sigmoid or ReLU function—to introduce
nonlinearity and improve the model’s capacity to
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distinguish between various fault scenarios. The
number of hidden layers and neurons is optimized
through experimentation to achieve high detection
accuracy while avoiding over fitting.

C. Output Layer

The output layer produces a classification result,
indicating the type and/or location of the fault. For
instance, in a multi-class classification problem, the
output neurons may represent different fault
categories such as L-G, L-L, L-L-G, or three-phase
faults. A softmax function is often used to
normalize the outputs into probabilities for each
class.

D. Training and Validation

The network is trained using supervised learning
techniques, where labeled data generated from
simulations or historical fault records are used. The
training process involves minimizing a loss
function—such as Mean Squared Error (MSE) or
Cross-Entropy Loss—using back propagation and
gradient  descent optimization. To ensure
generalization, the dataset is divided into training,
validation, and testing sets, and regularization
techniques such as dropout or early stopping are
applied.

Training involves:

o Dividing the dataset into training (70%),
validation (15%), and testing (15%)

e Using k-fold cross-validation to avoid over
fitting

o Implementing early stopping and dropout to
regularize the model

This ANN-based architecture offers high accuracy,
fast computation, and robustness to noise, making it
a promising tool for real-time fault detection and
classification in modern transmission systems.

Activation functions: ReLU for hidden layers,
softmax for output Loss function: Categorical cross-
entropy Optimizer: Adam or RMSprop

Results and Performance Evaluation:
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To assess the effectiveness of the proposed
Artificial Neural Network (ANN) model for fault
detection in transmission lines, a comprehensive
evaluation was conducted using simulated fault data
under various operating conditions. The model's
performance was measured based on classification
accuracy, fault localization precision, response time,
and robustness to noise and variability.

A. Evaluation Metrics

The following standard metrics were used to
evaluate the ANN model:

e Accuracy (%): Ratio of correctly identified
faults to total test cases.

e Precision and Recall: For each fault type,
to assess the model’s selectivity and
sensitivity.

e F1 Score: Harmonic mean of precision and
recall to provide a balanced performance
measure.

e Mean Absolute Error (MAE): Used for
evaluating fault location estimation.

o Detection Time: Time required by the ANN
model to detect and classify a fault after its
occurrence.

B. Simulation Setup

Fault  scenarios  were  generated using
MATLAB/Simulink for a 220 kV, 200 km
transmission line. Faults included L-G, L-L, L-L-G,
and L-L-L types, simulated at 10% intervals along
the line with varying fault resistance (1-100 Q) and
inception angles (0°-180°). A sampling rate of 10
kHz was used for current and voltage waveforms.
The ANN was trained using the Levenberg-
Marquardt back propagation algorithm.

C. Experimental Results

Result
Classification Accuracy 98.4%
Average Precision (All Faults)||97.9%

Metric

Average Recall (All Faults) {98.2%
F1 Score (Average) 98.0%
PAGE NO: 512



GRADIVA REVIEW JOURNAL

Metric Result
Mean . Absolute Error 173 km
(Location)

Average Detection Time <50 ms

The ANN model demonstrated high fault
classification accuracy across all fault types and
locations. Even in the presence of noise (up to 5%
Gaussian), the model maintained over 95%
accuracy, indicating strong robustness.

D. Comparative Analysis

Compared to traditional impedance-based fault
detection methods and decision tree classifiers, the
proposed ANN model outperformed in terms of
speed, accuracy, and generalization ability under
non-linear and noisy conditions.

E. Visualization

Confusion matrices and ROC curves were plotted to
illustrate fault classification performance. The
confusion matrix showed minimal misclassification,
particularly between similar fault types like L-L and
L-L-G. ROC curves indicated near-perfect area-
under-curve (AUC) scores for all fault categories.

Confusion matrix and ROC curves further validate
model performance. ANN outperforms traditional
models in adaptability and fault classification under
noisy conditions.

Comparison with Other Models

| Model I Accuracy |
IDecision Tree I 90.3% |
ISVM | 93.1% |
IANN | 96.2% |
ICNN I 97.5% |

While CNN offers slightly higher accuracy, ANN
strikes a good balance between performance and
computational efficiency, especially for real-time
systems.

Challenges and Limitations:
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e Requirement of large labeled datasets
e Risk of over fitting in small datasets
o Black-box nature limits interpretability

Future Aspects:

While the implementation of Artificial Neural
Networks (ANNs) for fault detection in
transmission lines has shown promising results,
there remain several avenues for further research
and development to enhance performance,
scalability, and practical deployment. The following
areas are identified as potential directions for future
work:

A. Real-Time Implementation

Future research should focus on deploying ANN-
based fault detection systems on real-time digital
signal processing (DSP) or microcontroller-based
platforms. This would enable faster response times
and facilitate integration with protection relays in
actual substations.

B. Hybrid Intelligent Systems

Combining ANNs with other soft computing
techniques, such as fuzzy logic, genetic algorithms,
or support vector machines (SVM), could improve
the fault detection system’s accuracy, robustness,
and adaptability to complex and uncertain grid
conditions.

C. Use of Real-World Data

While simulation data provides a controlled
environment for model development, the use of
real-time data from utilities or phasor measurement
units (PMUs) would improve model validation and
generalization. Access to fault records from actual
transmission systems will enhance model credibility
for practical adoption.

D. Extension to Multi-Line and Multi-Terminal Systems

Most current models are limited to single-line

systems. Future work should extend the
methodology to more complex network topologies,
including multi-line, multi-terminal, and

interconnected grid systems, which require more
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sophisticated data handling and classification
mechanisms.

E. Incorporation of Renewable Energy Sources

With the increasing integration of distributed and
renewable energy resources, future fault detection
systems must be adaptive to variable generation
patterns and inverter-based dynamics, which can
affect fault signatures.

F. Cybersecurity and Communication Aspects

As smart grids rely heavily on communication
networks, fault detection systems need to be robust
against cyber-attacks and communication failures.
Future models should include provisions for secure
and fault-tolerant communication protocols.

Conclusion

This study demonstrates the effectiveness of
Artificial Neural Networks (ANNSs) in accurately
detecting and classifying faults in electrical
transmission lines. By leveraging their ability to
learn complex nonlinear relationships from input
data, ANNs offer a robust and intelligent alternative
to traditional fault detection techniques. The
proposed ANN-based system can rapidly identify
fault types and locations with high accuracy, even
under varying system conditions and noise levels.
This enhances the reliability and speed of protection
mechanisms in power systems, contributing to
improved system stability and reduced downtime.
Future work can explore the integration of hybrid
intelligent techniques, real-time implementation on
embedded platforms, and testing with real-world
data to further improve performance and scalability.
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