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Abstract

This study integrates Vertical Electrical Sounding (VES) data with geotechnical slope analysis to
assess subsurface conditions and landslide susceptibility in Ekoli Eda, Southeastern Nigeria. Four
VES stations—Elugwu-Nguzu, Okpocha, Letu, and Ugwuelu—were analyzed to delineate
subsurface lithology and model potential failure zones. Combined resistivity modeling, shear
strength analysis, and slope safety evaluations reveal that saturated silty and clayey beds overlying
consolidated sandstone at Letu and Ugwuelu significantly reduce Factor of Safety (Fs), particularly
under rainfall-induced saturation. Ugwuelu exhibits the highest risk due to a 19.88 m thick
saturated clayey sand layer and steep elevation gradient. The study recommends site-specific slope
management strategies, including surface drainage systems, re-vegetation, and structural
reinforcements. These findings highlight the urgent need for proactive slope stability measures in
humid tropical terrains increasingly exposed to extreme weather events.
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1. Introduction
Geo-environmental hazards have been a significant threat to both human life and the natural
environment for many years. These hazards range from floods, landslides, earthquakes, tsunamis,
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soil erosion, wildfires, and more. A landslide is the movement of rocks, detritus, or soil caused by
the action of gravity (De Blasio, 2011). It also involves rapid displacement of rock mass, residual
soils, or sediments adjoining a slope (Malamud et al, 2004; Terzaghi, 2015). Landslides are
classified according to the type of movement (topples, slumps, sags, flow, slides, falls), material
composition (silt, rock, unconsolidated sediments), and speed (slow, moderate, fast) (Clague,
2013).

Landslides, have resulted in numerous deaths worldwide and account for 9% of the natural
disasters in the world (Gomez et al., 2023; Remondo et al., 2025; Kanwal et al., 2016; Galli et al.,
2008), hence, making it crucial to study this natural phenomenon. Several works have shown the
temporal and spatial distribution of landslide occurrences around the world, indicating that
landslides are a major global hazard, with large human and economic losses every yearly (Gomez
et al., 2023). According to a study conducted by Froude and Petley (2018), between 2004 and
2016, more than 55,000 people lost their lives globally as a result of landslides. Research findings
by Nsengiyumva et al., (2019) recorded that in 2014 alone, about 174 landslides occurred
worldwide resulting in devastating consequences for humans as well as natural resources.
Landslides are responsible for an average of 25-50 deaths per year in the United States, while the
global death toll caused by landslides reaches thousands. The majority of landslide fatalities are
due to rock falls, debris flows, and lahars, which are volcanic debris. On January 9, 2018, debris
flows occurred in Montecito, Santa Barbara County, California, resulting in 23 fatalities, at least
167 injuries, and more than 400 damaged homes. In Colombia, landslides are common due to the
country's mountainous terrain and heavy rainfall. In 2017, a landslide in Mocoa, Southern
Colombia, killed over 300 people and displaced thousands. The event was triggered by heavy
rainfall, which caused several rivers to overflow and led to massive amounts of debris being carried
downstream (Cheng et al., 2018).

Landslides have also occurred in Ethiopia, Nigeria, Tanzania, Uganda, and more. In 2010, a
landslide in Uganda's Bududa district killed over 400 people and displaced an estimated 5,000
people (Atuyambe et al., 2011) later in 2018, heavy rainfall in Ethiopia resulted in a landslide that
led to the unfortunate loss of 62 lives, with 30 individuals sustaining injuries. Additionally, around
5,091 households were forced to leave their homes, and significant damage occurred to houses, as
well as cultivated and non-cultivated land in various regions of the country (Wubalem, 2020).
Tanzania is also vulnerable to landslides, especially in its mountainous regions, such as the
Usambara and Uluguru mountains. On May 4, 2016, a landslide event took place in the Lwangwa
and Lupata Wards, located in the Rungwe district of the Mbeya region in Tanzania. This incident
involved rotational slumps, resulting in the unfortunate loss of five lives and the significant
destruction of numerous homes and structures (Tegeje, 2017).

Landslides are increasingly prevalent in humid tropical regions of Nigeria due to changes in
rainfall intensity and poor land-use practices leading to significant consequences. In Nanka,
Orumba North L.G.A, Anambra State, a major landslide took place, necessitating the evacuation
of 50 families (Okagbue, 1992). In September 1997, heavy rainfall triggered two distinct landslides
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on the slopes of the Akovolwo Mountains near Jato-Aka, located in the Kwande Local Government
area of Benue State (Agbor et al., 2014). Another distressing example of the destructive nature of
landslides occurred in Calabar, Cross River State, in 2013, when nine individuals lost their lives
due to landslides (Channels Television, September 9, 2013). Similarly, in 2015, Ugwelu Ekoli
Edda, Ebonyi State, experienced a landslide, and another occurred in Amuzukwu, Umuahia North,
on October 29, 2019. These incidents highlights the devastating impact of landslides in Nigeria.
The causes of landslides in Nigeria are diverse, but several common factors contribute to their
occurrence.

The occurrence of landslides is influenced by both causal and triggering factors. Causal factors
contribute to the creation of favorable conditions for landslides and include slope, elevation,
aspect, geology, and land use/land cover. On the other hand, triggering factors are responsible for
initiating landslides and can occur naturally due to snow melting, volcanic activity, groundwater
pressure, and prolonged rainfall. Additionally, human activities such as excavation, deforestation,
land-use change, hillslope cutting, construction of roads, and subsequent excessive vibration by
traffic and agricultural cultivation can also trigger landslides. (Guzzetti et al., 2012; Althuwaynee
et al.,2014; Chen et al., 2018; Ahmed, 2015).

Southeastern Nigeria is geologically situated between two major tectonic trends. The first has a
NW — SE direction expressed as the Okitipupa Basement Complex of Western Nigeria and the
Oban massifs and Mamfe embayment in the southeast. The second has a direction which is
approximately SW- NE and is expressed in the trend of the Cameroon volcanic zone, the Benue
trough, the Abakiliki Anticlinorium and the Afikpo Syncline (Amangabara, 2023). Between these
two Precambrian Basement areas, sediments of Cretaceous, Tertiary and Quaternary ages occur
and it is within this geologic setting that the greatest threat of gully erosion and landslides occur.
In Southeastern Nigeria, the Ekoli Eda area has exhibited signs of slope failure, necessitating a
detailed geophysical and geotechnical investigation. This study combines VES data and
geotechnical analysis to understand subsurface conditions and determine the most critical factors
contributing to landslide risk (Nwachukwu et al., 2014; Igwe, 2015).

2. Materials and Methods

Geophysical Survey: Four VES representative locations were selected for the resistivity survey
namely: Amanta (VES 1), Okpocha (VES 2), Elugwu-Nguzu (VES 3) and Letu (VES 4). To
complement surface studies, OHMEGA-500 Allied Associates geophysical equipment was used
to conduct a Vertical Electric Sounding (VES). At each of the 4 locations. Schlumberger
configuration was used for a total spread (L) of 150 m. VES stations were located in a central
point along a pre-determined traverse. A distance of 75 m (/) was covered on the right and another
75 m (Y2) was run on the left.

Data were processed using AGI EarthImager to produce 1D resistivity models. Field data was
subjected to automatic analysis based on the Schlumberger apparent resistivity equation:
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pa=m(AB/2 + MN/2)’x R (Ohm-m)
MN
Where AB = Current electrode spread (m)
MN = Potential electrode spread (m)
R = Measured field resistance (Ohm)

n(AB/2 + MN/2)* x R = Geo-electric constant (L)
MN

Thus pa=LR (Ohm-m)

Apparent resistivity generated automatically using the Advanced Geophysics Incorporation (AGI)
1D inversion resistivity analytical software to obtain the subsurface model of each location

Geotechnical Investigation: The investigation involves selecting appropriate methods for data
collection, such as drilling, sampling, and in-situ testing. Drilling obtains subsurface soil and rock
samples, while sampling collects samples for laboratory testing. In-situ testing measures properties
directly in the ground. Laboratory testing determines physical and mechanical properties like grain
size distribution, moisture content, shear strength, and permeability. Field tests like the CPT, and
SRT assess density, resistance, permeability, and seismic velocity. The analysis identifies potential
failure modes and calculates safety factors. Geotechnical data, including cohesion, angle of
internal friction, shear stress, and Factor of Safety (Fs), were used to evaluate slope stability. A
rainfall simulation was conducted by reducing soil cohesion by 50% to assess the impact of
saturation on slope failure.

3. Results and Discussion
3.1 Subsurface Interpretation

The Vertical Electrical Sounding (VES) data from Ekoli-Eda provide a detailed profile of
subsurface geologic layers, resistivity values, and lithology. The primary goal is to understand soil
characteristics, identify subsurface instability, and assess landslide susceptibility. Fig 1 is a
summary for each VES site
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Fig 1 ELUGWU-NGUZU EDA VES; Coordinate N 05.45.24 E 07.49.21.4; Elevation 725ft

Measured Resistivity Data

; Data# V (mV) I (mA)
1 280.000 100
2 180.000 100
3 150.000 100
4 120.000 100
5 100.000 100
6 50.000 100
7 785.018 100
8 433.987 100
9 250.000 100
10 210.000 100
11 99.864 100
12 423.471 100
13 303.527 100
14 202.010 100
15 100.000 100
16 68.250 100
17 159.534 100
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MN (m)
1.000
1.000
1.000
1.000
1.000
1.000
11.000
11.000
11.000
11.000
11.000
30.000
30.000
30.000
30.000
30.000
60.000

AB/2 (m)
2.500
3.500
4.500
6.000
8.000
10.500
10.000
12.500
15.000
18.000
24.000
24.000
28.000
34.000
50.000
70.000
70.000

Ohm-m

52.78

67.86

94.25

134.77
200.28
172.79
156.38
156.17
139.05
176.18
155.65
155.65
177.68
196.95
238.24
334.13
334.13
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Modeled Resistivity Layers

; Layer#

26.69
16.33
39.14
153.96
698.10
456.26
102.68
66.27
89.96
10 140.66
11 284.53

0NN N KW

O

12 2476477.50

Ohm-m

0.517
0.144
0.308
0.096
0.783
2.358
1.233
3.955
4.299
0.783
9.799

Constrained Geo-Electric Layers

; Layer#

1 153.96
2 456.26
3 66.27
4 140.66
5 284.53
6
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2476477.50

Ohm-m

0.096
2.358
3.955
0.783
9.799

ISSN NO : 0363-8057

Thickness (m) Depth (m)
0.517
0.661
0.969
1.065
1.848
4.206
5.439
9.394
13.694
14.476
24.275

Thickness (m) Depth (m) Lithology

1.065 Top soil

4.206 Siltstone

9.394 Sandy-clay bed

14.476 Sand

24.275 Mixed sand (Top of Bedrock)

Sandstone Bedrock, highly consolidated; deep red color
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Geo-Electric Layer Model - Elugwu-Nguz=zu
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 Siltstone (456.26 Qm)
Sandy-clay bed (66.27 Qm)
Sand (140.66 ©2m)
Mixed sand (284.53 Om)
Sandstone Bedrock (2476477.5 Qm) l

1H11H

T —

Fig 2 virtual diagram for the interpreted subsurface layers at Elugwu-Nguzu, showing depth,
lithology, and resistivity

The result shows that the Topsoil of Elugwu-Nguzu slope is very thin (0.096 m) with moderate
resistivity (153.96 Qm). The Intermediate Layers indicates an alternating sandy-clay and siltstone
layers with varied resistivity. While the Bedrock is extremely high resistivity (2,476,477.50 Qm),
indicating highly consolidated sandstone. The implication is that the presence of several
intermediate low-resistivity layers (e.g., 66.27 Qm sandy clay) over bedrock suggests possible
water retention zones. Risk of slope instability if saturated.
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Fig 3 OKPOCHA EDA; Coordinates: N05.45.57; E07.51.2.1. Elevation: 716ft.

Measured Resistivity Data

: Data#

0N N kAW

—t ek e ek e e \O
AN BN W= O

V (mV)
1320.000
600.000
270.000
250.000
150.000
130.000
50.000
1390.000
530.000
300.000
190.000
104.510
443.174
200.000
230.000
120.000
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I (mA)
100
100
100
100
100
100

100
100
100
100
100
100
100
100
100
100

MN (m)

1.000
1.000
1.000
1.000
1.000
1.000
1.000
11.000
11.000
11.000
11.000
11.000
30.000
30.000
30.000
30.000

AB/2 (m)
1.500
2.500
3.500
4.500
6.000
8.000
10.500
10.000
12.500
15.000
18.000
24.000
24.000
28.000
34.000
50.000

Ohm-m
82.94
113.10
101.79
157.08
168.47
260.36
172.79
276.90
190.72
166.86
159.40
162.90
162.90
117.08
224.24
285.88
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Geo-Electric Model Layers
; Layer# Ohm-m Thickness (m)

74.84
53.14
54.75
70.87
158.28
242.82
519.43
566.06
184.69
10 63.18
11 120.28

0N N kW

O

12 7304.30

0.653
0.153
0.200
0.279
0.058
0.007
0.595
1.258
0.992
8.292
3.345

Constrained Geo-Electric layers

; Layer#  Ohm-m

1 158.28

2 566.06

3 63.18

4 120.28
5 7304.30

Thickness (m)

0.058
1.258
8.292

3.345

Depth (m)

0.653
0.806
1.007
1.285
1.343
1.350
1.945
3.202
4.195
12.486
15.831

Depth (m)

1.343
3.202
12.486
15.831

ISSN NO : 0363-8057

Lithology

Topsoil

Siltstone

Sandy-clay bed

Sand (Top of Bedrock)

Consolidated Bedrock; Shaly Sandstone

From the Geo-electric model above fig 4 (a generalized virtual diagram of the Okpocha) Vertical
Electrical Sounding (VES) was drawn. The generalized shows Topsoil as Thin (0.058 m) and
moderately resistive (158.28 Qm). Middle Layers: Thick sandy-clay bed (~8.29 m, 63.18 Qm).
Bedrock: High resistivity (7304.30 Qm) consistent with shaly sandstone. This is an indication that
the slope is homogeneous, generally stable and consistent subsurface with good consolidation;
there is a lower landslide susceptibility unless external loads are applied with respect to this slope

at Okpocha Eda
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Geo-Electric Layer Model - Okpocha

Depth (m)

Topsoil (158.28 Om)

Siltstone (566.06 Qm)

Sandy-clay bed (63.18 Qm)

Sand (Top of Bedrock) (120.28 Om)

16

Fig 4 Virtual subsurface diagram for Okpocha Eda
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Approved By

[Software | Earthimager 1D

Data File

Fig 5 LETU EDA  Coordinates N05. 46. 52. E 07. 02. 52. Elevation: 674ft

Measured Resistivity Data

; Data# V (mV) I (mA) MN (m) AB/2 (m) Ohm-m
1 1530.000 100 1.000 1.500 96.13
2 470.000 100 1.000 2.500 88.59
3 250.000 100 1.000 3.500 94.25
4 230.000 100 1.000 4.500 144.51
5 220.000 100 1.000 6.000 247.09
6 130.000 100 1.000 8.000 260.36
7 60.000 100 1.000 10.500 207.35
8 640.000 100 11.000 10.000 127.4
9 380.000 100 11.000 12.500 136.74
10 280.000 100 11.000 15.000 155.74
11 190.000 100 11.000 18.000 159.40
12 84.948 100 11.000 24.000 132.40
13 360.220 100 30.000 24.000 132.40
14 160.000 100 30.000 28.000 93.66
15 178.000 100 30.000 34.000 173.54
16 190.000 100 30.000 50.000 452.65
17 82.734 100 30.000 70.000 405.04
18 193.391 100 60.000 70.000 405.04
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Modeled Geo-Electric Layers

; Layer# Ohm-m

1 119.51 4.629
2 104.53 0.310
3 82.16 0.935
4 82.07 4.984
5 176.81 1.010
6 381.63 0.738
7 478.24 0.206
8 377.86 0.153
9 121.04 1.691
10 84.00 5.886
11 136.80 4.085
12 1945.84

Constrained Geo-Electric Layers

Thickness (m) Depth (m)

4.629

4.939

5.874

10.858

11.868
12.606
12.812
12.965
14.656
28.542
34.627

; Layer# Ohm-m Thickness (m) Depth (m) Lithology

1 119.51 4.629 4.629 Extended Topsoil

2 82.07 4.984 10.858 Sandy-Clay Bed

3 478.24 0.206 12.812 Siltstone

4 121.04 1.691 14.656 Sand

5 84.00 5.886 28.542 Silty-Sand

6 136.80 4.085 34.627 Sand

7 1945.84......... Consolidated Sandstone Bedrock
Geo-Electric Layer Model - Letu

Extended Topsoil

Sandy-Clay Bed
10
Siltstone

Sand
15§

Depth (m)

20 |
Silty-Sand

25 F

30
Sand

35|

Extended Topsoil (119.51 (m)
Sandy-Clay Bed (82.07 £2m)
Siltstone (478.24 (Om)

Sand (121.04 Qm)

Silty-Sand (84.0 OQOm)

Sand (136.8 OQOm)

Fig 6 Generalized model of Letu Eda
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The generalized model (Fig 6) of Letus Eda Slope has Topsoil: Thickness of (4.629 m), moderate
resistivity. The intermediate Layers is composed of Sandy-clay and silty sand over consolidated
sandstone bedrock. Generally, Silty-sand and sandy-clay beds (low-moderate resistivity) are
potential slip planes, especially under saturation or slope stress. This is an in indication for
moderate-high landslide potential, especially in zones with extended topsoil and loose materials.
The layered structure with clayey and silty materials, indicate potential instability.

Measured and Modeled Data Layered Resistivity Model
ﬂﬂﬂﬂﬂ ]
D 108.2
435 I 200
562
773 50.1
8.85
I 57.3
1000 12.43
T D 125.0
E
3 —
= -Ia I 517.8
<
H . !- > -
2 ] » D 2708
: o
= gty g =
100 & - -
P
b T N D 2304
I] 118.2
32.16
I] 59.2
I 3212.0
‘\[I01 . 5
. y Ohm-m
Schiumberger Array, ABi2 (m) Depth (m)
tteration =8 RMS = 44.54%
UUUUUUU AG

Fig 7 UGWUELU (Ogwuma Landslide). Coordinates N 05. 45.47.9; E 01. 51. 11.9. Elevation
Top (7221t) Bottom (555ft)
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Measured Resistivity Data

; Data# V (mV)

Ohm-m

1 1260.000

2 315.000

3 230.000

4 550.000

5 400.000

6 150.000

7 100.000

8 330.000

9 370.000

10 190.000

11 270.000

12 195.758

13 830.108

14 260.000

15 160.000

16 50.318

17 143.091

18 150.000

Modelled Geo-Electric Layers

; Layer# Ohm-m

1 134.84 0.511
2 35.26 0.372
3 51.45 0.470
4 65.31 0.709
5 117.42 2.693
6 533.06 1.326
7 318.86 1.940
8 402.16 1.123
9 248.15 1.481
10 100.08 0.627
11 54.05 19.883
12 523014.63

VOLUME 11 ISSUE 7 2025

I (mA) MN (m)
100 1.000
100 1.000
100 1.000
100 1.000
100 1.000
100 1.000
100 1.000
100 11.000
100 11.000
100 11.000
100 11.000
100 11.000
100 30.000
100 30.000
100 30.000
100 30.000

100 60.000
100 60.000
Thickness (m) Depth (m)

0.511

0.883

1.353

2.062

4.755

6.081

8.020

9.143

10.624

11.250

31.133

1.500
2.500
3.500
4.500
6.000
8.000
10.500
10.000
12.500
15.000
18.000
24.000
24.000
28.000
34.000
50.000
50.000
70.000
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AB/2 (m)

79.17

59.38

86.71

345.58
449.25
300.41
345.58
65.74

133.15
105.68
226.52
305.12
305.12
152.20
155.99
119.88
119.88
314.16
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Constrained Geo-Electric layers

; Layer# Ohm-m Thickness (m) Depth (m) Lithology

1 51.45 0.470 1.353 Lateritic Topsoil

2 117.42 2.693 4.755 Sand

3 533.06 1.326 6.081 Siltstone

4 318.86 1.940 8.020 Sandy shale

5 248.15 1.481 10.624 Mixed sand

6 54.05 19.883 31.133 Saturated clayey sand horizon
7 523014.63 ....... Highly Consolidated Sandstone Bedrock

Geo-Electric Layer Model - Ugwuelu

O -
Lateritic Topsoil
Sand
5F Siltstone
Sandy shale
Mixed sand
10
E
= 15§
pre=}
o
7]
[an]
20
Saturated clayey sand
25§
Lateritic Topsoil (51.45 Qm)
Sand (117.42 Qm)
Siltstone (533.06 Om)
30 Ssandy shale (318.86 Qm)
Mixed sand (248.15 Qm)
Saturated clayey sand (54.05 Qm)

Fig 8 Generalized diagram Ugwuelu Slope

Topsoil of this slope is characterized by lateritic soil over sandy-shale and saturated clayey sand.
Underneath is mixed sand. Beneath this layer is very thick saturated clayey sand layer (19.883 m,
54.05 Qm). While Bedrock with extremely high resistivity (523,014.63 Qm). The result shows
that the saturated horizon acts as a potential failure plane—high risk of landslide especially under
increased overburden pressure or intense rainfall.
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Elugwu-Nguzu slope (fig2) exhibits a consolidated profile with no saturated weak layer—resulting
in low landslide risk. Okpocha (Fig3) shows moderate risk, especially at points with negligible
cohesion. Letu Eda (fig 6) features silty sand over bedrock and extensive topsoil, posing moderate-
to-high risk. Ugwuelu (Fig 8) displays the most critical condition with a thick, saturated clayey
sand layer overlying bedrock and a steep slope—indicating high landslide potential.

Table 1: Geotechnical Property of Soil on each of the four Slopes

SLOPES COHESION ANGLE OF SHEAR SHEAR MAXIMUM SAFETY
POSITION  (KN/m*2) INTERNAL STRENGTH  STRESS NORMAL FACTOR
S FRICTION® (")  ©(KN/m’) STRESS (Fs)
0,,(KN/m’®)
Sipl 10.03 19.24 87.07 55.48 333.96 2.20
S1p2 10.77 20.20 91.28 63.36 349.95 2.21
S1p3 10.51 19.25 86.01 56.61 337.62 2.15
S2pl 11.61 17.00 76.21 44.57 314.60 227
S2p2 11.89 25.20 121 103.07 422.72 2.04
S2p3 0 18.75 69.89 45.74 304.97 2.20
S3pl 11.48 20.01 91.22 33.06 349.46 3.93
S3p2 33.83 10.35 73.28 26.04 303.80 2.33
S3p3 31.78 12.50 66.89 34.37 163.66 1.97
S4p1 28.34 8.90 60.68 18.89 276.93 2.59
S4p2 29.75 17.38 101.59 60.59 367.55 2.03
S4p3 40.8 4.31 56.15 8.27 260.22 291
S1 = ELUGWU-NGUZU EDA, S2= OKPOCHA EDA S3=5 LETU EDA, S4 = UGWUELU
(Ogwuma

3.2 Factor of Safety and Rainfall Simulation
Computation of slope models and Factor of Safety (F = C/D) for each site.
Consideration for slope model is based on:

1. Slope angles at each Vertical Electric Sounding (VES) site (top and bottom elevations and
horizontal distances).

2. Cohesion or resisting force (C)
3. Unit weights of soil and water if known (we used standard values).

Here are the standard values commonly used for unit weights of soil and water in geotechnical
engineering:
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1. Unit Weight of Water
o yw (Water):
> 9.81 kN/m? (standard at 4°C)

> Often approximated as 10 kN/m? for simplicity in field calculations

2. Unit Weight of Soil

Unit weight depends on the soil type and condition (dry, moist, saturated).

Soil Type Dry Unit Weight (yd) Saturated Unit Weight (ysat)
Loose sand 14-17 kN/m? 18-20 kN/m?
Dense sand 16-20 kN/m? 20-22 kN/m?
Silty sand / sandy silt 14—-18 kN/m? 18-21 kN/m?
Clay (soft to stiff) ~ 14—-18 kN/m? 18-22 kN/m?
Gravel 18-22 kN/m? 20-24 kN/m?
Organic soils/Peat 814 kN/m? 10—16 kN/m?

Typical Assumptions:
e Drysoil: 16-18 kN/m?
e Saturated soil: 18-22 kN/m?
o Water: 9.81 or 10 kN/m?

From the Table 1 (Geotechnical data) supplied from the lab which includes cohesion values,
internal friction angles, shear strength and stress, and safety factors (Fs) for different slope
positions labeled S1pl to S4p3. We proceeded by:

1. Match slope points (S1-S4) to VES locations:
e S1 — Elugwu-Nguzu
e S2 — Okpocha
e S3— Letu

e S4 — Ugwuelu

VOLUME 11 ISSUE 7 2025 PAGE NO: 531



GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

2. Visualize Factor of Safety at each slope point (p1—p3 per site).
3 Highlight critical zones (Fs < 2.0) indicating higher landslide risk.

Simulated saturation resulted in Fs dropping below critical levels (Fs < 1.5) in Letu and Ugwuelu,
confirming vulnerability under intense rainfall or groundwater infiltration.

Factor of Safety (Fs) by Slope Position

401 Elugwu-Nguzu
—e— Okpocha
—e— letu
—e— Ugwuelu
3.5¢ -=- Critical Fs = 1.!

Warning Fs = 2

3.0

Factor of Safety (Fs)

2.0

L5 oo o o e e e e

> > Vv
g g R QR
Slope Position

This graph shows the Factor of Safety (Fs) for each slope position across the four VES sites:

e Fs < 2.0 (below the orange line): indicates potential instability or concern under certain
conditions.

o Notably, Letu (S3p3) has a Fs of 1.97 — indicating moderate landslide risk.

e Fs>2.0: generally considered stable, though conditions like saturation or seismic activity
can change this.

o Highest stability is seen at Letu S3p1 (Fs = 3.93) and Ugwuelu S4p3 (Fs =2.91).

We proceeded to generate a combined site map with slope stability zones and also simulate effect
of rainfall/saturation by reducing cohesion values to show safety degradation.
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Combined Site Map with Slope Stability Zones

1. Combined Site Map:

o

ISSN NO : 0363-8057

Each slope position (S1pl to S4p3) is plotted with a color scale based on the
original Factor of Safety (Fs).

Locations with Fs > 2.0 appear in green to blue (safe), while those approaching or
below 2.0 trend toward yellow and red (less stable).

2. Rainfall Simulation:

o

To model the impact of saturation, cohesion values are halved, simulating
weakened soil bonding due to water.

The recalculated Fs = C/D shows visibly lower values—Ilocations previously
marginally stable might now fall below the safety threshold (Fs < 1.5), especially
where cohesion was already low (e.g., Letu S3p3 or Ugwuelu).

The diagram below shows the distribution of Factor of Safety (Fs) across 12 slope positions under
normal and rainfall-simulated conditions. Sites with Fs < 2.0 are considered more vulnerable to
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From the stability analysis, most slope sites demonstrate acceptable stability under normal
conditions. However, simulated rainfall significantly reduces the Factor of Safety, especially in
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areas with low cohesion or silty-clayey overburden. Simulated saturation resulted in Fs dropping
below critical levels (Fs < 1.5) in Letu and Ugwuelu, confirming vulnerability under intense
rainfall or groundwater infiltration. While Okpocha exhibited higher sensitivity to saturation.

Based on the VES and the geotechnical data presented, the most critical factors contributing to
landslide susceptibility in the four locations sampled are:

1. Presence of Saturated Clayey or Silty Layers: Letu and Ugwuelu have thick clayey-silty layers
(e.g., saturated clayey sand and silty sand) immediately overlying bedrock. These layers have
low shear strength and may become incompetent when saturated—essentially acting as slip
planes. VES at Ugwuelu shows 19.88 m of saturated clayey sand above bedrock—a classic
landslide-prone profile. Water saturation reduces cohesion and increases pore pressure,
dramatically lowering Factor of Safety (Fs).

2. Weak Topsoil and Overburden: Thin, low-resistivity topsoil layers (like those in Okpocha and
Letu) suggest lateritic or loose materials, which have limited cohesion. These are vulnerable
to erosion and downward stress from overburden or development. Shallow failure surfaces
develop easily under load or saturation.

3. Steep Slope Gradients: Elevation differences (e.g., Ugwuelu: 722 ft to 555 ft) indicate
significant slope. When combined with soft layers, slope angle increases shear stress beyond
resisting capacity. High slope angles amplify driving forces, pushing unstable materials
downslope.

4. Low Cohesion in Critical Points: From geotechnical data: Some sites like S2p3 (Okpocha)
show 0 kN/m? cohesion—meaning soil strength relies only on internal friction. Under wet
conditions, friction is reduced, further lowering Fs.

5. External Loads / Land Use: Though not detailed in the data, factors like: buildings,
deforestation, heavy machinery, seismic activity or vibrations (during the time of the
construction of Ekoli Eda bridge) may trigger or accelerate slope failure, especially where
underlying soil is weak.

6. Most Contributing Factor (Combined): > Saturation of weak subsurface layers (especially
silty/clayey beds) combined with steep slope gradients are the primary triggers for landslides
in these locations.

The table below presents a ranked risk assessment of landslide susceptibility in the Ekoli Eda area
based on the Vertical Electrical Sounding (VES) interpretation and geotechnical data. It includes
key risk factors for each site and proposes specific mitigation strategies.
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Table 2 Ranked Landslide Risk

ISSN NO : 0363-8057

Site

Key Risk Factors

Overall Risk

Ugwuelu

Letu Eda

Okpocha Eda

Elugwu — Nguzu

-Thick Saturated Clayey-
sandy layer (19.88m)

-High slope gradient
(Elevation drop: 722ft to
555ft)

-Moderate Fs under saturation
-Silty sand over bedrock
-Variable = Resistivity &
extended topsoil

- Fs drops below 2.0 in some

zones

- Slope zone with 0 kN/m?
Cohesion (S2p3)

-Risk increases under
Saturation

-Consolidated subsurface

- No clayey saturation horizon
- Stable under most conditions

High Risk

Moderate - Risk

Moderate

Low

4. Conclusion

This study demonstrates that combining VES and geotechnical data provides valuable insights into

slope behavior. The results underscore the need for proactive, localized interventions in

communities like Ekoli Eda, where rainfall-induced saturation can significantly increase landslide

risks. These findings are crucial for regional planning, disaster risk management, and infrastructure

development.
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