vlaminanvanyl)

ISSN NO: 0363-8057

Review on Preparation of 1-Ethyl-3-(3-dimethylaminopropyl) Carbodiimide Hydrochloride (EDC·HCl) in Batch Process

Vivek Jyotiram Kumre^{1*}, Dr. Sonali R. Dhokpande²

^{1*}Student, University of Mumbai, Thane, Maharashtra 400608, India, ²Assistant Professor, Department of Chemical Engineering, Datta Meghe College of Engineering, Mumbai Universiy, Airoli, Navi Mumbai, Maharashtra, 400708, India,

Abstract: The synthesis of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) plays a crucial role in pharmaceutical, biochemical, and industrial applications, primarily as a water-soluble carbodiimide coupling reagent. It is widely used in peptide synthesis, bioconjugation, and crosslinking reactions. The batch process for its preparation involves multiple reaction steps, typically including amine alkylation, carbodiimide formation, and salt precipitation. This review presents a comprehensive analysis of the various synthetic methodologies employed for EDC·HCl preparation, highlighting reaction parameters, optimization strategies, and critical process challenges.

Key parameters such as reaction temperature, choice of solvents, catalysts, reactant concentrations, and pH control significantly impact product yield and purity. The formation of carbodiimides involves dehydration and activation of the corresponding urea intermediate, necessitating careful control of water content, reaction kinetics, and by-product removal. Additionally, the stability of EDC·HCl under different storage conditions and its susceptibility to hydrolysis demand a thorough examination of handling and formulation techniques.

This review also explores recent advancements in greener and more sustainable synthetic approaches, focusing on minimizing solvent use, enhancing reaction efficiency, and adopting continuous or semi-batch processing strategies. Comparative analyses of conventional batch processes versus modern process intensification techniques provide insights into improving the overall scalability, cost-effectiveness, and environmental sustainability of EDC·HCl production.

By consolidating research findings on batch synthesis, this paper aims to guide future developments in optimizing the production process of EDC·HCl for industrial applications.

Keywords: 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, Bioconjugation, Reaction, cost-effectiveness, Process intensification, Environmental sustainability, Scalability.

1. INTRODUCTION

The synthesis of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) has gained significant attention due to its widespread applications in organic synthesis, bioconjugation, and pharmaceutical industries. As a widely used water-soluble carbodiimide coupling reagent, EDC·HCl plays a critical role in the formation of amide bonds between carboxyl and amine functional groups, making it essential for peptide synthesis, protein modification, and crosslinking reactions.

Importance of EDC·HCl in Chemical and Pharmaceutical Applications

Carbodiimides, including EDC·HCl, serve as highly efficient coupling agents that facilitate peptide bond formation without introducing unwanted byproducts, unlike other coupling reagents that generate racemization or toxic side products. EDC·HCl has notable advantages such as high solubility in aqueous media, ease of handling, and minimal toxicity, making it preferable over other carbodiimides like dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide (DIC).[1-5]

In biotechnology and pharmaceutical applications, EDC·HCl is extensively used in the functionalization of biomolecules, including proteins, nucleic acids, and polysaccharides. It enables crosslinking in drug delivery systems, the modification of biomaterials, and the immobilization of enzymes and antibodies on solid supports. Given its critical role in bioengineering and medicinal chemistry, optimizing its batch synthesis process is a key focus for researchers and industry professionals.

Traditionally, EDC·HCl is synthesized in a batch process involving the reaction of 1-Ethyl-3-(3-dimethylaminopropyl) urea with phosgene or its derivatives, leading to the formation of the corresponding carbodiimide, which is then converted to its hydrochloride salt. The batch synthesis process is widely used in industrial settings due to its process control flexibility, ease of scale-up, and better reaction monitoring. However, challenges such as side product formation, reaction efficiency, and purification difficulties necessitate continuous improvements in process optimization.[6-8]

Key factors influencing the batch synthesis of EDC·HCl include:

Reaction parameters (temperature, solvent choice, reaction time)

Reagent stoichiometry and purity

Catalysts or additives to improve yield and selectivity

Crystallization and purification techniques to enhance product stability

Understanding and optimizing these factors is crucial for achieving high purity, better yield, and process sustainability, ensuring the economic viability of EDC·HCl production at an industrial scale.[9-10]

This review aims to provide a comprehensive analysis of the batch process synthesis of EDC·HCl, highlighting advancements in reaction optimization, purification strategies, and process sustainability. It also discusses alternative green chemistry approaches, the challenges associated with traditional synthesis methods, and the potential for process intensification and scale-up in industrial applications. By critically evaluating current methodologies and emerging trends, this paper seeks to contribute to the development of a more efficient and environmentally friendly production strategy for EDC·HCl.[11-14]

2. LITERATURE REVIEW

The literature survey provides a comprehensive overview of prior research and developments in the synthesis and application of EDC·HCl. The key focus areas include reaction mechanisms, production methods, optimization techniques, and environmental considerations.[15-17]

- **2.1. Historical Development**: Early studies focused on the development of carbodiimides as coupling agents, with EDC·HCl gaining prominence due to its superior efficiency and solubility. Researchers such as Sheehan and Hess (1955) first demonstrated the utility of carbodiimides in peptide synthesis.
- **2.2. Reaction Mechanism Studies**: Several studies have elucidated the reaction pathways and intermediate stages in the synthesis of EDC·HCl. Key contributions include:

Identification of N,N'-dialkylurea as an intermediate. Mechanistic insights into carbodiimide formation via dehydration of urea derivatives. Role of solvents, temperature, and catalysts in optimizing the reaction pathway.

2.3. Synthesis Methods: The literature describes both batch and continuous methods for EDC·HCl production. For batch synthesis:

Sheehan and Lang (1961) provided foundational methods for carbodiimide synthesis. Recent advancements have emphasized improving yields through solvent selection and temperature control. Continuous processes, as explored by Tsutsui et al. (2010), highlight the potential for scalability but with higher initial costs and technical complexity.

2.4. Optimization Strategies: Research has extensively covered strategies to enhance efficiency and minimize by-products:

Use of molecular sieves and anhydrous solvents to prevent hydrolysis. Adjusting reactant ratios to maximize yield while suppressing side reactions. Implementing real-time monitoring tools such as FTIR spectroscopy.

2.5. Environmental Concerns: Several studies address the environmental impact of EDC·HCl production:

Use of hazardous solvents like dichloromethane has raised concerns. Alternative green solvents and recycling methods are being developed, as reported by Green et al. (2018). Waste minimization strategies, including solvent recovery and by-product reuse, have been explored.

2.6. Applications and Advancements: The versatility of EDC·HCl has driven significant research in its applications:

Peptide synthesis: Studies by Jones et al. (2005) demonstrated its efficiency compared to other coupling agents.

Bioconjugation: Extensive work on cross-linking proteins and nucleic acids, as reviewed by Singh and Kumar (2012).

Emerging fields: Use in nanotechnology and drug delivery systems, highlighting its expanding scope.

2.7. Comparative Studies: Recent comparative analyses have benchmarked EDC·HCl against other carbodiimides and coupling agents, providing quantitative insights into efficiency, cost, and environmental impact. For example, Patel et al. (2020) conducted a detailed comparison of EDC·HCl with DCC (dicyclohexylcarbodiimide), highlighting its superior performance in aqueous systems.

This comprehensive literature survey provides the foundation for understanding current challenges and opportunities in the batch synthesis of EDC·HCl, forming the basis for the subsequent sections on process optimization and future directions.[18-20]

3. RESEARCH PROBLEM DEFINITION AND MOTIVATION

The preparation of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) in a batch process is fraught with several challenges that hinder its efficiency, scalability, and sustainability. Addressing these issues requires a clear definition of the research problem and an understanding of the motivating factor

3.1. Research Problem

• Low Process Efficiency:

Batch processes are typically less efficient compared to continuous processes due to the time-consuming nature of setup, reaction, and cleaning cycles. Side reactions, such as the formation of urea by-products, reduce the overall yield and necessitate additional purification steps.

• Environmental Concerns:

The use of volatile organic compounds (VOCs) as solvents and the generation of hazardous waste pose significant environmental risks. Compliance with stricter environmental regulations increases operational costs and complexity.

• Challenges in Scalability:

Scaling up the batch process introduces issues like heat transfer limitations, inconsistent mixing, and difficulty in maintaining uniform reaction conditions. These factors can lead to batch-to-batch variability, affecting product quality and consistency.

• Lack of Real-Time Monitoring:

Conventional batch processes rely on periodic sampling and offline analysis, which can delay corrective actions and reduce overall process control.

• High Energy Consumption:

Prolonged reaction times and repeated heating/cooling cycles contribute to increased energy use, impacting the economic viability of the process.

3.2. Motivation for Research

• Industrial Importance:

EDC·HCl is a critical reagent in pharmaceuticals, biotechnology, and material science. Enhancing its production efficiency has direct implications for these industries.

• Economic Incentives:

Optimizing the batch process can lower production costs, making EDC·HCl more accessible for a wider range of applications.

• Environmental Sustainability:

Developing greener and more sustainable production methods aligns with global goals for reducing industrial waste and carbon emissions.

• Scientific Advancement:

Research into reaction mechanisms, alternative solvents, and innovative reactor designs offers opportunities for ground-breaking discoveries.

• Regulatory Compliance:

Meeting environmental and safety regulations requires process innovations that minimize waste and enhance operational safety.

• Future Opportunities:

Advances in real-time monitoring technologies, such as spectroscopy and machine learning, provide a pathway for achieving precise process control and optimization.

By addressing these research problems, the goal is to develop a robust, efficient, and sustainable batch process for the preparation of EDC·HCl that meets industrial demands and environmental standards.

4. PROPOSED RESEARCH METHODOLOGY

The proposed research methodology aims to address the challenges associated with the batch preparation of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) through systematic experimentation, process optimization, and environmental considerations. The methodology is structured as follows:

4.1. Experimental Design Reactant Optimization:

- Reactant Ratios: The synthesis of EDC·HCl involves the reaction of 1-ethylisocyanate (EI) with 3-(dimethylaminopropyl)amine (DMAP) in the presence of hydrochloric acid. The molar ratio of the reactants plays a crucial role in the yield and purity of the final product. A molar ratio of 1:1 (EI:DMAP) is typical, but variations should be tested to find the optimal ratio for maximum yield and minimal by-products. Ensure that the amount of hydrochloric acid is in excess to fully neutralize any remaining amine groups and facilitate the formation of EDC·HCl.
- Concentration Optimization: High reactant concentrations could lead to a faster reaction rate but may also increase the formation of by-products or unwanted side reactions. Concentration of hydrochloric acid (HCl): The concentration of HCl is crucial in ensuring complete neutralization and efficient formation of the carbodiimide linkage. Typically, a concentrated solution of HCl (around 12 M) is used. Testing with lower concentrations (such as 6 M) could help balance reaction time and by-product formation.
- Purity and Impurity Management: High-purity reagents are essential for minimizing side reactions and maximizing the yield of EDC·HCl. Contaminants in the starting materials, especially in amines, can lead to the formation of by-products like urea derivatives or amide side reactions. Ensuring that reactants are free of water and other contaminants is crucial.[21-22]

Solvent Selection:

Screen various solvents for their suitability in terms of solubility, reaction rate, and environmental impact. Prioritize greener alternatives such as ethanol or acetone over traditional solvents like dichloromethane.

Key Factors to Consider:

- Solubility of Reactants: The solvent must dissolve the starting materials, 1-ethylisocyanate (EI) and 3-(dimethylaminopropyl)amine (DMAP), as well as the hydrochloric acid (HCl), to facilitate the reaction.
- Non-reactivity: The solvent must be chemically inert to the reactants and the products. Any reactivity between the solvent and the reactants could lead to the formation of unwanted by-products. The solvent should also be stable under the reaction conditions (temperature, acidity).
- Boiling Point: The boiling point of the solvent should be suitable for the reaction conditions. A solvent with a moderate boiling point allows the reaction to occur at an optimal temperature while reducing the need for excessive heat. Solvents with boiling points between 60-100°C are typically selected for batch reactions involving carbodiimide synthesis.
- Polarity: Solvents with the right polarity can enhance the solubility of both the carbodiimide and amine reagents, improving reaction efficiency. The solvent should be polar enough to dissolve the amine (DMAP), which is moderately polar, but not too polar to inhibit the formation of the carbodiimide linkage.
 - Commonly Used Solvents in EDC·HCl Synthesis:

i. Acetone:

Properties: Acetone is a polar aprotic solvent with a low boiling point (56°C).

Advantages: It is highly miscible with water and most organic compounds, dissolves both EI and DMAP efficiently, and allows for easy separation of by-products in the post-reaction purification step.

Disadvantages: Acetone may lead to increased evaporation losses if not properly controlled during the reaction.

ii. Dichloromethane (DCM):

Properties: DCM is a non-polar solvent with moderate polarity and a boiling point of 39.6°C.

Advantages: It has excellent solubility for organic compounds like DMAP and EI, ensuring good reaction efficiency. It also evaporates quickly after the reaction, making it easy to remove during product isolation.

Disadvantages: DCM is volatile and toxic, so safety precautions are essential during its use. iii. Ethanol:

Properties: Ethanol is a polar protic solvent with a boiling point of 78.37°C.

Advantages: It is a safer and less toxic alternative compared to DCM, with moderate solubility for both reactants and the product. It also promotes a cleaner reaction due to its lower reactivity with amines.

Disadvantages: It has a lower solvent capacity than DCM or acetone for non-polar reactants and may need to be used in higher volumes.

iv. Tetrahydrofuran (THF):

Properties: THF is a highly polar aprotic solvent with a boiling point of 66°C.

Advantages: THF can dissolve a wide range of organic compounds, including DMAP and EI, and promotes a high rate of carbodiimide formation. It is especially useful when higher reaction temperatures are desired.

Disadvantages: THF can absorb moisture and react with water, leading to potential side reactions. Care must be taken to dry it before use.

v. Dimethylformamide (DMF):

Properties: DMF is a polar aprotic solvent with a high boiling point (153°C).

Advantages: It dissolves both the amine and carbodiimide intermediates effectively and may aid in achieving faster reaction rates.

Disadvantages: DMF is toxic and can lead to undesirable by-products if not carefully controlled. It is not ideal for large-scale processes due to its toxicity and cost.

vi. N,N-Dimethylacetamide (DMAc):

Properties: DMAc is a polar aprotic solvent with a high boiling point (165°C).

Advantages: Similar to DMF, DMAc can dissolve both reactants well and is often used in carbodiimide synthesis for its ability to improve reaction rates.

Disadvantages: Like DMF, it has safety concerns and is relatively expensive.

• Suggested Solvent Selection Strategy:

Initial testing: Begin with acetone or DCM, as these are the most commonly used solvents for carbodiimide synthesis. Acetone is safer and easy to handle, while DCM may provide faster reaction rates.

Scale-up considerations: For larger batches, ethanol or THF may be more suitable due to their lower toxicity, although THF must be handled carefully to avoid moisture.

Post-reaction purification: After the reaction, acetone and DCM are easier to remove during the solvent evaporation process, ensuring a cleaner product.

4.2. Reaction Condition Optimization:

Temperature Control

The temperature during the batch process can significantly affect the rate of the carbodiimide formation reaction. Proper control ensures optimal yield and minimizes the formation of undesirable by-products.

• Optimal Temperature Range:

The reaction between 1-ethylisocyanate (EI) and 3-(dimethylaminopropyl)amine (DMAP) typically occurs at moderate temperatures. Ambient temperature (20-30°C) is commonly used, as this is sufficient for the carbodiimide formation without causing decomposition or excessive side reactions. Slightly elevated temperatures (40-50°C) may be explored for improving the reaction rate, especially when longer reaction times are not feasible. Higher temperatures (above 50°C) may lead to unwanted side reactions (such as the formation of urea derivatives), which can reduce the purity of the final product.

• Effect of Temperature on Reaction Rate:

The reaction between EI and DMAP to form carbodiimide is generally endothermic, meaning higher temperatures can drive the reaction to completion more rapidly. However, temperatures above 50°C can lead to the degradation of sensitive intermediates or result in the formation of secondary products, such as urea derivatives or oligomeric carbodiimides that reduce yield and purity.

• Control Strategy:

Precise heating control (using thermostats or jacketed reactors) is important to avoid temperature fluctuations. Monitor the temperature continuously with a temperature probe in the reactor, adjusting heating as necessary to maintain the optimal reaction conditions. Cooling systems may be used to ensure that the temperature does not exceed desired levels, especially in exothermic side reactions.

Pressure Control:

Pressure plays a secondary role in the batch process but can still impact reaction kinetics and solvent behaviour.

- Pressure Considerations: The reaction between EI and DMAP is typically carried out at atmospheric pressure (1 atm). However, pressure control might be needed in some cases: Low-pressure conditions (slightly reduced pressure) can be used in vacuum distillation steps to remove solvents (like acetone or DCM) after the reaction, which helps to avoid decomposition at higher temperatures. High pressure is generally not required for the carbodiimide formation itself, unless higher boiling solvents or very elevated temperatures are being used. In that case, a pressure reactor may be required to withstand the elevated conditions.
- Effect of Pressure on Volatile Solvents: Low-pressure conditions can help prevent excessive evaporation of volatile solvents during the reaction and facilitate the removal of residual solvents after the reaction is complete. Negative pressure (vacuum) can be applied toward the end of the batch process to evaporate solvents, leaving behind a cleaner, more concentrated product.
- Pressure Control Strategy: If using a solvent like DCM or acetone, vacuum distillation under reduced pressure can help remove the solvent efficiently, especially after the reaction is complete and before the product isolation phase. For reactions requiring a sealed vessel or if using high-boiling solvents, an overpressure system (suitable for the solvent and materials) may be implemented to ensure safety and prevent any accidental solvent vaporization.

Time Optimization:

Monitor reaction progress over time to determine the minimum reaction time required for maximum yield.

Temperature-Dependent Reaction Kinetics:

- Lower temperatures (20-30°C): The reaction proceeds at a moderate rate, allowing for good control over by-products. However, longer reaction times (12-24 hours) may be needed at ambient temperatures to reach completion.
- Elevated temperatures (40-50°C): Raising the temperature can accelerate the reaction and decrease the required time, potentially reducing it to 6-12 hours. However, the reaction time should be monitored carefully, as too high a temperature (above 50°C) can increase the formation of side products such as urea derivatives, reducing the purity of EDC·HCl.
- Optimal Time-Temperature Balance: Typically, a temperature of 30-40°C is a good balance for faster conversion without compromising product quality. At this temperature range, the reaction can be completed in 6-12 hours, depending on the reactant concentrations and solvent choice.

Effect of Reaction Concentration:

Higher concentrations of reactants (EI and DMAP) can speed up the reaction, potentially shortening the required time. However, high concentrations may also lead to side reactions or precipitate by-products. For lower concentrations, the reaction may take longer, but there will be fewer side reactions, and the process can be easier to control, especially when purity is a key concern.

Pressure Optimization for Reaction Time:

Pressure primarily affects the volatility of solvents and boiling points, especially when using solvents like DCM, acetone, or ethanol. While pressure does not directly influence the reaction kinetics in the case of carbodiimide formation, it can affect solvent evaporation rates and reaction time.

- Atmospheric Pressure: For most batch processes involving carbodiimide formation, atmospheric pressure (1 atm) is sufficient. The reaction can proceed under these conditions with the solvent evaporating at a controlled rate. The reaction time is generally not significantly affected by atmospheric pressure unless a volatile solvent is being used. The reaction time would primarily depend on temperature and reactant concentrations.
- Reduced Pressure: In some cases, vacuum distillation under reduced pressure can be used after the reaction to remove solvents or drive the reaction forward. Applying reduced pressure (e.g., 20-50 mmHg) can also help accelerate solvent evaporation after the reaction completes, reducing the overall time needed for post-reaction workup.
- Increased Pressure: Higher pressures are generally not required for carbodiimide formation unless extremely high boiling-point solvents or superheated conditions are used. Excessive pressure can complicate the process and may increase the formation of by-products or cause dangerous reactions.

Time Monitoring and Process Control:

- Real-Time Monitoring: In situ monitoring of the reaction progress is crucial for time optimization. Techniques like HPLC or GC can provide real-time data on the concentration of reactants and products, allowing for precise timing of the reaction. pH monitoring can also be used, as the formation of EDC·HCl will cause a gradual drop in pH due to the reaction with HCl. The reaction can be stopped or modified when the desired pH range is achieved.
- Sampling: Periodic sampling of the reaction mixture (every few hours) can help determine whether the reaction is progressing as expected. Sampling allows you to adjust the reaction time based on the observed concentration of intermediates or final product.
- Automated Control Systems: Using automated batch reactors with time-controlled features can allow for more efficient reaction time optimization. These systems can adjust temperature, agitation, and other parameters automatically, ensuring that the reaction completes in the shortest time without sacrificing yield or purity.

Post-Reaction Time Optimization:

- Solvent Removal: After the reaction is complete, the solvents used for dissolving the reactants (such as acetone or DCM) must be removed. This step can be optimized for time by using vacuum distillation or rotary evaporation, which can reduce the solvent volume efficiently under controlled temperatures and pressures. Using reduced pressure (e.g., 50-100 mmHg) speeds up solvent removal, reducing the overall time spent in the post-reaction phase.
- Purification: The purification of EDC·HCl typically involves crystallization, filtration, or extraction to remove impurities and by-products. Using optimized solvent choices and conditions during purification (e.g., choosing solvents with low boiling points for efficient solvent removal) can significantly reduce time spent in this step.

Effect of Time on By-Products:

If the reaction time is too long, unwanted side reactions may occur, such as the formation of urea derivatives (from excessive DMAP or EI) or other impurities. Time optimization is thus a balancing act: you want to allow enough time for complete reaction but avoid excessively long reaction times that lead to degradation or by-product formation.

Suggested Time Ranges:

- Optimal Reaction Time: At 30-40°C temperature, a 6-12 hour reaction time is typical for carbodiimide formation. This balances efficiency and purity.
- Shorter Reaction Time: If higher temperatures (50°C) are used, the reaction can often be completed in 4-6 hours. However, careful monitoring of side products is crucial.
- Longer Reaction Time: If the reaction is conducted at lower temperatures or with lower concentrations of reagents, the reaction may take up to 24 hours, but this is less common.

4.3. Process Monitoring and Analysis:

In-Line Monitoring:

Utilize spectroscopy techniques (e.g., FTIR or NMR) to monitor the formation of intermediates and the final product in real-time. Implement pH and temperature sensors to ensure consistent reaction conditions. In-line monitoring during the preparation of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) in a batch process is crucial for optimizing reaction conditions, ensuring the desired product yield, and minimizing the formation of by-products. By continuously monitoring key parameters such as reactant concentration, temperature, pH, and solvent composition, you can adjust process conditions in real time to improve the efficiency and quality of the synthesis.

Key Parameters for In-Line Monitoring:

Concentration of Reactants and Products:

- Monitoring Reactant Conversion: It's important to track the concentration of the starting materials (1-ethylisocyanate and 3-(dimethylaminopropyl)amine) to ensure the reaction is progressing as expected. This can be done by measuring the concentration of the reactants or intermediates in real-time.
- Product Formation: The concentration of EDC·HCl can also be monitored to determine when the reaction has reached completion, helping to stop the reaction at the right time to minimize side product formation.
- Temperature: Temperature plays a significant role in the rate of reaction and the formation of by-products. In-line temperature sensors or thermocouples can be used to continuously monitor the reaction temperature and ensure it remains within the optimal range (20-50°C, depending on the desired reaction speed and product purity).
- Thermal profiling: By recording temperature changes throughout the reaction, you can identify any unexpected exothermic or endothermic events that might indicate side reactions or other issues.
- pH Monitoring: Since hydrochloric acid is involved in the reaction to form EDC·HCl, monitoring the pH can provide valuable insights into the progress of the reaction. A pH probe can be installed in-line to track the changes in pH during the reaction. A gradual drop in pH typically indicates the formation of carbodiimide species, and the pH value can be used to indicate when the reaction is approaching completion. By adjusting the pH if necessary (e.g., adding base to neutralize any acid buildup), you can help minimize unwanted side reactions and ensure the desired outcome.
- Solvent concentration: The concentration of solvent or solvent mixture can be tracked to ensure that it remains within the expected range. Fluctuations in solvent concentration may indicate an issue with evaporation or solute dissolution, which can affect the reaction. Gas chromatography (GC) or high- performance liquid chromatography (HPLC) can be used to analyze the composition of the solvent and detect any solvent impurities or changes in solvent behaviour.
- Reaction Kinetics (IR or UV-Vis Spectroscopy): In-line FTIR (Fourier-transform infrared spectroscopy) or UV-Vis (ultraviolet-visible spectroscopy) can be used to measure the absorbance spectra of the reaction mixture in real time, providing insights into the formation of key intermediates and final products. For example, FTIR can help track the appearance or disappearance of key functional groups (such as the carbodiimide band at around 2260 cm⁻¹) or monitor the formation of HCl during the reaction. UV-Vis can monitor the absorbance of specific wavelengths associated with the reactants or products, providing another layer of information about the reaction progress.
- Gas Generation (if applicable): If gas is generated as a by-product (for example, if any volatile side products or solvents are involved), in-line gas analyzers or pressure transducers can monitor gas formation and pressure buildup. This is particularly useful for ensuring that pressure does not exceed the reactor's limits, potentially causing unsafe conditions. Mass spectrometers (MS) can be used to identify and quantify gaseous by-products in real-time.

Common In-Line Monitoring Techniques:

- a) UV-Vis Spectroscopy: Measures the absorption of light in the UV and visible ranges to monitor reactant and product concentrations.
- b) FTIR Spectroscopy: Measures molecular vibrations, especially useful for detecting functional groups such as carbodiimides or amines in real-time.
- c) Raman Spectroscopy: Another non-destructive method for in-line monitoring of chemical reactions, particularly for detecting molecular changes without disturbing the reaction.

Chromatographic Monitoring:

- a) HPLC (High-Performance Liquid Chromatography): Can be used for real-time sampling to measure the concentration of reactants and products in solution.
- b) GC (Gas Chromatography): If volatile components or solvents are involved, GC can help monitor these components during the reaction.
- c) Electrochemical and pH Sensors:
- i) In-line pH probes: Can continuously measure pH and provide feedback on the acid-base balance during the reaction. This is particularly useful when working with HCl or any acid-sensitive reactions.
- ii) Conductivity sensors: Monitoring the ionic strength of the solution can provide an indirect indication of the concentration of ionic species, helping to track the progress of the reaction.
- iii) Temperature and Pressure Sensors: Thermocouples or resistance temperature detectors (RTDs): Can be integrated to provide real-time temperature measurements within the reactor. This allows for fine-tuning of heating or cooling during the reaction.
- iv) Pressure transducers: In cases where pressure changes are expected (e.g., for vacuum distillation or solvent evaporation), pressure sensors can monitor pressure in the reactor, ensuring safety and process control.
- v) Mass Spectrometry (MS): Mass spectrometry can be used for real-time detection and analysis of volatile compounds in the reaction mixture or exhaust gases, helping identify side products or monitor the purity of the final product.

Benefits of In-Line Monitoring:

- a) Real-time Data: Allows for continuous observation of the reaction's progress without taking manual samples, leading to more accurate and timely adjustments.
- b) Improved Yield and Purity: By monitoring key parameters, such as reactant concentrations, pH, and temperature, in real-time, you can stop the reaction at the optimal point to maximize yield and minimize the formation of by-products.
- c) Increased Safety: In-line monitoring helps detect any abnormal fluctuations in pressure, temperature, or gas evolution, allowing for early intervention and preventing dangerous situations.
- d) Process Optimization: Continuous monitoring can lead to a better understanding of the reaction kinetics, helping optimize conditions such as temperature, reaction time, and solvent choice for future batches.

4.4. Product Analysis:

Analyse the product using chromatographic methods (e.g., HPLC or GC) to determine purity and identify by-products. In-line monitoring and product analysis are essential for ensuring the quality, yield, and purity of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) during a batch process. While in-line monitoring primarily focuses on tracking reaction parameters such as temperature, pressure, and reactant concentrations, product analysis evaluates the composition and purity of the final product. This analysis is crucial for confirming that the reaction has been completed successfully and the desired product has been synthesized.

• Concentration of EDC·HCl (Final Product):

The primary goal of product analysis is to determine the concentration of the final product, EDC·HCl, to assess whether the reaction has achieved its intended yield. UV-Vis Spectroscopy can be used in-line to monitor the absorption characteristics of EDC·HCl, especially in the UV region (around 220-250 nm). The product's unique absorbance spectra can help track its formation in real-time. HPLC (High-Performance Liquid Chromatography) or GC (Gas

Chromatography) can be employed for more accurate and quantitative product analysis by separating the product from any by-products and measuring its concentration.

• Purity of EDC·HCl:

Purity is one of the most important quality metrics for EDC·HCl. The product should have minimal contamination from by-products such as urea derivatives, dimethylaminopropylamine (DMAP), or 1-ethylisocyanate. HPLC is a highly effective technique for assessing purity, as it can separate EDC·HCl from its by-products and impurities, providing clear chromatographic peaks corresponding to the pure product and impurities. Mass spectrometry (MS) can further confirm the identity and purity of the product by analyzing its molecular structure, identifying any remaining impurities or side products. FTIR Spectroscopy can also be used to confirm the functional groups of the final product (e.g., carbodiimide group at ~2260 cm⁻¹), and detect any discrepancies in the product composition.

• By-Product Identification and Quantification:

Identifying and quantifying by-products is an essential part of product analysis. In the case of EDC·HCl synthesis, common by-products may include urea derivatives (from overreaction of EI with DMAP) or unreacted 1-ethylisocyanate. HPLC or GC can identify and quantify these by-products by separating them from the main product. Mass spectrometry (MS) is particularly useful for identifying specific mass fragments of potential by-products, allowing for their accurate quantification and structural identification. FTIR can also detect side products if they produce distinct peaks that differ from the main product's spectrum.

• Reaction Completion (End-Point Detection):

To ensure that the reaction has reached completion, product analysis can confirm the conversion of reactants into the desired product. This is especially important in batch processes where the reaction time can vary based on multiple factors. In-line FTIR can help track the disappearance of reactant peaks (e.g., the disappearance of the isocyanate group) and the appearance of product peaks (e.g., carbodiimide and HCl absorption bands). The presence of hydrochloric acid (HCl) can be monitored via pH probes or by tracking the evolution of acid during the reaction. Once HCl reaches its target concentration, it can indicate that the reaction is nearing completion.

• Moisture Content (for Final Product Stability):

Moisture content in EDC·HCl can affect its stability and purity, especially since EDC is sensitive to moisture and can hydrolyze over time. Karl Fischer titration (for moisture content) or in-line capacitance sensors can be used to measure the water content of the final product. Drying under reduced pressure may also be monitored using in-line moisture analysis to ensure that any residual solvent or moisture is removed from the product before isolation and storage.

• Impurity Profiling:

Impurity profiling is necessary to ensure that the final product meets specifications for use, especially in sensitive applications (e.g., pharmaceutical or fine chemical synthesis).

LC-MS (Liquid Chromatography-Mass Spectrometry) is an excellent tool for impurity profiling, as it can separate and identify impurities in the product mixture. NMR (Nuclear Magnetic Resonance) spectroscopy may also be used off-line to confirm the structure of the final product and check for any unexpected impurities or residual reagents.

• Yield Calculation:

The yield of the final product is calculated based on the concentrations of the reactants and the amount of product formed. In-line product analysis allows for accurate yield determination, and adjustments to reaction time or conditions can be made in subsequent batches. HPLC or UV-Vis spectroscopy can help determine the final concentration of EDC·HCl, which can then be used to calculate the yield relative to the theoretical amount.

• Techniques for In-Line Product Analysis:

a) HPLC (High-Performance Liquid Chromatography): Separates EDC·HCl from other components in the reaction mixture and can quantify the product's concentration. This method is highly accurate for assessing the purity and yield of EDC·HCl. UV detection at wavelengths corresponding to the product's absorbance is commonly used in HPLC for EDC·HCl analysis.

- b) GC (Gas Chromatography): Can be used for volatile solvent analysis or for measuring volatile by-products. However, it may not be as effective for large non-volatile products like EDC·HCl.
- c) FTIR (Fourier-Transform Infrared Spectroscopy): Used in-line to monitor changes in functional groups (e.g., carbodiimide stretching at 2260 cm⁻¹) and detect the formation of the final product or the disappearance of starting materials. It can be used to monitor intermediate steps or product formation in real-time.
- d) UV-Vis Spectroscopy: Allows for real-time tracking of product concentration based on its absorbance characteristics. EDC·HCl can be monitored in the UV range, where it has distinct absorbance peaks.
- e) Mass Spectrometry (MS): Mass spectrometry provides detailed molecular analysis and is particularly useful for identifying and quantifying any residual by-products. It can also help confirm the molecular structure of the EDC·HCl product.
- f) NMR (Nuclear Magnetic Resonance) Spectroscopy: While NMR is typically an off-line analysis technique, it can be used to confirm the purity and identity of the product by comparing the spectra of the final product with the expected fingerprint.
- g) Karl Fischer Titration: For moisture content analysis, Karl Fischer titration is the most precise method. It helps ensure that the final product is dry and stable for further processing or storage.

• Advantages of In-Line Product Analysis:

- a) Real-time Data: Provides immediate feedback on product quality, allowing for quick adjustments to reaction conditions or workup procedures.
- b) Consistency: Continuous monitoring of product concentration and purity ensures that each batch meets the required specifications for yield and purity.
- c) Time Savings: In-line analysis reduces the need for manual sampling and off-line analysis, speeding up the overall process. Enhanced Quality Control: In-line product analysis allows for continuous quality control, ensuring that the final product meets both quantity and quality standards.

4.5. Purification and Yield Improvement: Isolation Techniques:

Optimize crystallization or precipitation methods to maximize product recovery. Explore the use of anti-solvents to enhance the efficiency of product isolation. Isolation of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) from a batch reaction is a critical step to ensure the final product's purity, yield, and suitability for its intended use. Since EDC·HCl is typically produced in an aqueous solution with possible residual solvents, byproducts, and unreacted reactants, effective isolation techniques must be employed to separate the product from the reaction mixture.

• Solvent Removal (Evaporation):

After the reaction has been completed, the product may be in solution with residual solvents or reaction intermediates. The first step in isolation typically involves the removal of these solvents.

- a) Rotary Evaporation (Rotavap): This is a commonly used technique to remove solvents under reduced pressure. It allows for the solvent to be evaporated at a lower temperature, preventing thermal degradation of the product.
- b) Vacuum Distillation: In case of higher boiling solvents or if residual solvents are not easily removed under normal evaporation conditions, vacuum distillation can be employed to separate the solvent based on its boiling point.
- c) Solvent Recovery: If the solvent used in the reaction is expensive or needs to be reused, solvent recovery can be implemented by distilling the solvent under reduced pressure, condensing it, and purifying it before reuse.

• Crystallization:

Crystallization is a common method for isolating EDC·HCl as it is typically a crystalline solid at room temperature. This method relies on differences in solubility between the product and impurities.

- a) Cooling Crystallization: After solvent removal, the reaction mixture can be cooled down to allow EDC·HCl to crystallize out of the solution. The rate of cooling and the choice of solvent are important factors to control the quality and yield of the crystallized product.
- b) Solvent Selection: The choice of solvent is critical in crystallization. Common solvents used for crystallizing EDC·HCl include acetone, ethyl acetate, or methanol. These solvents can dissolve the product at high temperatures and allow crystallization upon cooling.
- c) Anti-solvent Addition: An anti-solvent, such as hexane, can be added to the reaction mixture to reduce the solubility of the product and promote crystallization.

• Filtration:

After crystallization or if any solid by-products are present in the reaction mixture, vacuum filtration can be employed to separate solid impurities from the liquid phase. Teflon or glass frit filters are typically used to prevent clogging, and the solid impurities are collected for disposal or further processing. Filtration of HCl: If hydrochloric acid (HCl) is present in the product mixture, filtration can also be used to separate any remaining aqueous phase that contains HCl.

• Liquid-Liquid Extraction:

Liquid-liquid extraction can be used when the product is soluble in one solvent phase and the impurities are soluble in another. This technique is useful when separating EDC·HCl from polar or non-polar contaminants. The reaction mixture is mixed with an immiscible solvent (often ethyl acetate, chloroform, or dichloromethane), and the two phases are allowed to separate. The solvent containing EDC·HCl is then isolated and evaporated to obtain the product.

Aqueous Phase Treatment: The aqueous phase may contain residual HCl or unreacted reagents. It can be neutralized with a base, and the organic phase can be extracted again for further purification if necessary.

• Ion Exchange (for Purification):

Ion-exchange chromatography can be used if the product contains any ionic impurities, such as unreacted hydrochloric acid or other ionic by-products. In this process, the mixture is passed through an ion-exchange resin that selectively binds the unwanted ions (e.g., HCl), allowing pure EDC·HCl to elute. This method is particularly effective if the product is in an aqueous solution and ionic impurities need to be removed.

• Drying:

Once EDC·HCl has been crystallized or separated from the solvent, it is essential to dry the product to remove any residual solvent or water.

- a) Vacuum Drying: The product can be placed under a vacuum to remove volatile solvents at low temperatures.
- b) Freeze Drying (Lyophilization): For highly moisture-sensitive products, freeze-drying may be used to remove water by sublimation. This is particularly useful if the product is in an aqueous phase after crystallization.
- c) Desiccators: If a small amount of residual solvent remains, placing the product in a desiccator with a drying agent (such as silica gel or phosphorus pentoxide) can help remove moisture without applying heat.

• Product Characterization and Quality Control:

After isolation, it is important to characterize the isolated product to confirm its identity, purity, and quality. The following methods can be used for final analysis:

- a) NMR Spectroscopy (1H-NMR, 13C-NMR): Provides detailed structural information and confirms the identity of EDC HCl.
- b) FTIR Spectroscopy: Used to confirm the presence of key functional groups (carbodiimide group at \sim 2260 cm⁻¹) and ensure that no residual unreacted reagents or by-products are present.

- ISSN NO: 0363-8057
- c) Mass Spectrometry (MS): Helps confirm the molecular weight and structural integrity of EDC·HCl.
- d) Melting Point Determination: The melting point of EDC·HCl can be measured and compared to known values to assess purity. A pure sample will typically have a sharp and consistent melting point.
- e) HPLC: For final purity analysis, HPLC can be used to quantify the amount of EDC·HCl and detect any remaining impurities.

• Suggested Isolation Process Flow:

- a) Reaction Completion: Monitor the reaction progress using in-line analysis methods (e.g., FTIR, UV-Vis) to confirm the formation of EDC·HCl.
- b) Solvent Removal: Use rotary evaporation or vacuum distillation to remove solvents from the reaction mixture.
- c) Crystallization: Cool the mixture and/or add antisolvent to induce crystallization of EDC·HCl. Filter off any residual solids and separate the crystalline product.
- d) Filtration: Perform vacuum filtration to remove any solid impurities, unreacted reagents, or by-products.
- e) Purification (if necessary): Perform recrystallization or use liquid-liquid extraction to further purify the product.
- f) Drying: Dry the product under vacuum or using freeze-drying to remove any remaining solvent or moisture.
- g) Characterization: Use analytical techniques like NMR, FTIR, and HPLC to confirm the identity and purity of the isolated EDC·HCl.

• Advantages of These Isolation Techniques:

- a) High Purity: Crystallization and filtration steps ensure the isolation of high-purity EDC·HCl.
- b) Efficiency: Using techniques such as rotary evaporation and vacuum distillation allows for efficient solvent removal without excessive loss of product.
- c) Scalability: These methods are scalable and can be applied to both small and large batch production of EDC·HCl.
- d) Versatility: The combination of techniques like crystallization, filtration, and liquid-liquid extraction allows for flexibility in isolating the product depending on the specific reaction conditions and impurities present.

4.6. Green Chemistry Integration:

Waste Minimization:

Design experiments to recycle and reuse solvents and minimize the generation of hazardous by-products. Waste minimization is a crucial aspect of any chemical process, particularly in the preparation of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) in a batch process. Implementing strategies to reduce the generation of waste and making the process more efficient not only improves the environmental footprint but also enhances cost-effectiveness and sustainability.

• Optimizing Reaction Conditions:

- a) Stoichiometric Control: Carefully control the stoichiometry of the reaction to avoid excess reagents. Using only the necessary amounts of reactants reduces the amount of unreacted chemicals that need to be disposed of. For example, optimize the amount of 1-ethylisocyanate and 3-dimethylaminopropylamine to prevent excessive by-product formation.
- b) Catalyst Use: If applicable, using catalysts in the reaction may reduce the need for excess

• Efficient Solvent Management:

a) Solvent Recovery and Recycling: Solvents such as acetone, methanol, and ethyl acetate are often used in the synthesis and purification of EDC·HCl. Implementing solvent recovery systems (e.g., distillation or membrane separation) allows solvents to be reused, reducing the need for fresh solvent and minimizing waste.

- ISSN NO: 0363-8057
- b) Solvent Selection: Choose solvents with low toxicity, ease of recovery, and low environmental impact. Additionally, consider using green solvents (e.g., water, bio-based solvents) that can further reduce environmental waste.
- c) Use of Less Solvent: Minimize the amount of solvent used during both the reaction and purification steps by optimizing the volume to just what is required for the dissolution or reaction to occur.

• By-product Management:

- a) Minimizing By-products: In reactions that form EDC·HCl, controlling reaction conditions such as temperature, pressure, and time can minimize the formation of unwanted by-products like urea derivatives or residual isocyanates.
- b) By-product Recycling: If any by-products are generated that have commercial value or can be used in other chemical processes, consider a recycling stream to use these by-products in subsequent processes.
- c) Purification Optimization: Using techniques like crystallization, distillation, or liquid-liquid extraction efficiently ensures the recovery of the desired product, while unwanted by-products and impurities are either removed or minimized.

• In-line Monitoring and Process Control:

- a) Real-time Monitoring: The use of real-time monitoring tools (e.g., in-line spectroscopic analysis, pH probes, or temperature sensors) can help ensure that the reaction proceeds efficiently and to completion. By detecting the end point of the reaction early, unnecessary excess reagent use can be avoided, thus minimizing waste.
- b) Process Optimization: Regular process control ensures that reaction times and temperatures are optimized, and that the product quality is consistent, reducing the need for rework or excessive purification that generates additional waste.

• Reduction in Energy Consumption:

- a) Energy-Efficient Equipment: Use energy-efficient equipment such as vacuum pumps and distillation columns to reduce energy usage during solvent recovery and product isolation. Reducing energy consumption decreases the carbon footprint and overall waste produced by the process.
- b) Heat Integration: Implementing heat integration strategies (e.g., heat exchangers) can reduce the need for external energy sources, minimizing waste associated with heating or cooling operations.

• Batch Size Optimization:

- a) Optimal Batch Size: Optimize the batch size based on the reactor capacity and process efficiency. Smaller batches, when appropriate, can reduce waste from excess chemicals and solvents. However, careful consideration is required to avoid underutilization of equipment and resources.
- b) Scaling Considerations: If scaling up, ensure that waste production does not increase disproportionately. Scaling should be done in a way that maintains the efficiency of waste management systems.

• Wastewater Treatment:

- a) Wastewater Recycling: If aqueous phases or wash solvents are used during purification or crystallization, treat and recycle wastewater to avoid disposal of solvents and reduce the environmental impact.
- b) Neutralization of Acidic/Basic Waste: If acids like HCl are used or produced during the process, neutralize those using alkaline (e.g., sodium hydroxide) before disposal to prevent acidification of waste streams. The neutralized salts can often be safely disposed of or used for other purposes.
- c) Membrane Filtration or Adsorption: Technologies like membrane filtration or adsorption can be used to treat waste solutions containing organic or inorganic contaminants, allowing the recovery of reusable solvent or reducing the environmental impact of wastewater.

• Green Chemistry Principles:

- a) Atom Economy: Ensure that the synthetic route to EDC·HCl maximizes atom economy, meaning as many atoms from the reactants are incorporated into the final product as possible. Minimizing the loss of atoms as waste reduces the overall waste generation.
- b) Use of Renewable Resources: Whenever possible, use renewable feedstock's (e.g., bio-based solvents) in the preparation of EDC·HCl to reduce the overall environmental impact and waste associated with non-renewable chemical resources.
- c) Safe Disposal of Hazardous Waste: For hazardous materials like residual solvents or chemicals, use proper disposal methods in compliance with regulations. Employ chemical recycling or safe incineration methods if these substances cannot be reused or recovered.

• Packaging Waste Reduction:

- a) Minimal Packaging: Use minimal and recyclable packaging materials to reduce waste generation. Recyclable and reusable containers for solvents, reagents, and final products help minimize the environmental impact of packaging.
- b) Bulk Reagents: Consider purchasing reagents in bulk to reduce packaging waste and improve cost efficiency.

• Waste Minimization Strategies Implementation:

- a) Process Flow Analysis: Perform a comprehensive mass and energy balance analysis to identify areas where waste reduction can be most effectively applied, including areas with high waste streams or inefficiencies.
- b) Employee Training: Train operators and workers on best practices for waste minimization, including efficient solvent handling, accurate measurement of reagents, and proper disposal practices.

• Summary of Waste Minimization Techniques:

- a) Reaction Optimization: Control stoichiometry, temperature, and pressure to minimize reagent waste.
- b) Solvent Recovery: Recover and reuse solvents through distillation or other recycling methods.
- c) By-product Management: Minimize by-product formation and explore recycling opportunities.
- d) Real-time Monitoring: Implement real-time process control to optimize reaction conditions and minimize excess chemical usage.
- e) Batch Size Optimization: Adjust batch size to avoid excess chemical and solvent usage while maintaining efficiency.
- f) Wastewater Treatment: Implement effective wastewater treatment to recover solvents and minimize the environmental impact.
- g) Green Chemistry Principles: Adopt atom economy, renewable feedstocks, and safer chemical processes to reduce waste generation.
- h) Packaging Waste: Reduce packaging waste by using recyclable materials and bulk reagents.

Energy Efficiency:

Explore the use of energy-efficient reactors and heating systems to reduce overall energy consumption.

Improving energy efficiency during the batch synthesis of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) is essential for reducing operational costs, lowering the environmental footprint, and achieving sustainable production. Below are strategies to enhance energy efficiency across different stages of the process.

• Reaction Stage Optimization:

- a) Optimal Reaction Temperature and Pressure: Maintain the reaction temperature and pressure at the optimal levels to reduce unnecessary energy consumption. Use thermodynamic and kinetic studies to identify the minimum temperature and pressure required for the reaction to proceed efficiently without compromising yield.
- b) Energy-efficient Heating and Cooling: Replace conventional heaters with electric heating systems or induction heating, which offer faster and more efficient heat transfer. Use heat

ISSN NO: 0363-8057

- exchangers for efficient transfer of heat between process streams, such as utilizing heat from exothermic reactions to preheat reactants.
- c) Batch Process Scheduling: Optimize batch scheduling to minimize downtime between batches. Efficient scheduling ensures continuous operation of heating and cooling systems, reducing energy losses during start-up and shutdown.

• Solvent and Reaction Medium Efficiency:

- a) Energy-conscious Solvent Selection: Use solvents with lower boiling points to reduce the energy required for heating and solvent recovery. For example: Replace solvents like dimethylformamide (DMF) with more energy-efficient alternatives such as acetone or ethyl acetate, where possible.
- b) Solvent Recovery: Implement solvent recovery systems such as distillation columns or thinfilm evaporators to recycle and reuse solvents. Optimizing these systems for energy efficiency reduces the energy required for solvent reuse.

• Equipment Optimization:

- a) Efficient Reactors: Use reactors with high heat transfer efficiency, such as jacketed reactors or micro-reactors, which reduce energy loss during heating and cooling.
- Install agitation systems optimized for low energy consumption without compromising mixing efficiency.
- b) Insulation: Ensure proper insulation of reactors, pipes, and storage tanks to minimize heat loss. Insulation materials such as ceramic fibers or foam glass can improve thermal efficiency.
- c) Advanced Sensors and Controls: Use advanced temperature, pressure, and flow sensors integrated with process control systems to maintain conditions within the optimal range, avoiding energy overuse.

• Heat Recovery Systems:

- a) Reaction Heat Recovery: Capture and reuse heat from exothermic reactions to preheat incoming reactants or solvents. For example: Use a heat exchanger to transfer energy from the reaction mixture to the feed stream.
- b) Waste Heat Recovery: Install systems to recover waste heat from exhaust gases or cooling systems. Thermal vapor recompression (TVR) and organic Rankine cycle (ORC) systems can convert waste heat into useful energy.

• Energy-efficient Drying and Crystallization:

- a) Vacuum Drying: Replace conventional drying methods with vacuum drying, which reduces the boiling point of solvents, requiring less energy to evaporate residual moisture.
- b) Efficient Crystallization: Use controlled cooling crystallization to avoid excessive cooling, which wastes energy. Optimize the cooling profile to achieve gradual crystallization with minimal energy usage.
- c) Freeze Drying (Lyophilization): If freeze-drying is used, optimize freeze-drying parameters (e.g., sublimation temperature and vacuum pressure) to minimize energy consumption.

• Renewable Energy Integration:

- a) Solar Thermal Systems: Use solar thermal systems to provide process heat for reactions, solvent recovery, and drying. These systems can significantly reduce reliance on non-renewable energy sources.
- b) On-site Power Generation: Install on-site renewable energy sources, such as solar panels or wind turbines, to power critical equipment.
- c) Energy Storage Systems: Use energy storage solutions, such as batteries or thermal storage tanks, to store excess energy generated during low-demand periods for later use.

• Process Intensification:

- a) Microwave or Ultrasound Heating: Replace conventional heating methods with microwave or ultrasound-assisted heating, which offer targeted energy delivery, faster reaction times, and reduced energy waste.
- b) Continuous-flow Systems: Where applicable, explore converting batch processes into continuous-flow systems. Continuous systems can be more energy-efficient by reducing start-up and shutdown energy losses.

• Facility-wide Energy Efficiency:

- a) Energy Audits: Conduct regular energy audits to identify inefficiencies in equipment, utilities, and infrastructure. Implement recommendations to reduce energy consumption.
- b) LED Lighting: Use energy-efficient LED lighting in production facilities to reduce energy consumption.
- c) HVAC Optimization: Optimize heating, ventilation, and air conditioning (HVAC) systems to maintain energy efficiency in the facility. Use energy recovery ventilators (ERVs) to capture and reuse waste heat.

• Green Chemistry and Catalysis:

- a) Catalyst Efficiency: Use catalysts that allow reactions to occur at lower temperatures and pressures, reducing energy requirements.
- b) Enzymatic Catalysis: Where applicable, explore enzymatic or bio-catalytic routes that operate under mild conditions, reducing energy consumption.

• Monitoring and Metrics:

- a) Energy Performance Indicators (EPIs): Establish EPIs to track energy usage per unit of product. Use these metrics to identify opportunities for further energy optimization.
- b) Real-time Energy Monitoring: Implement energy monitoring systems to provide real-time feedback on energy consumption during the process.

• Benefits of Energy Efficiency in EDC·HCl Production:

- a) Cost Reduction: Lower energy consumption reduces operational costs, improving the profitability of the process.
- b) Environmental Sustainability: Energy-efficient processes contribute to lower greenhouse gas emissions and a reduced environmental footprint.
- c) Regulatory Compliance: Adopting energy-efficient practices can help meet stringent environmental and energy regulations.
- d) Process Reliability: Optimized energy use often results in more stable and reliable process conditions, improving product quality.

4.7. Effect of various parameters:

The preparation of EDC·HCl in a batch process is influenced by a variety of parameters, including reaction conditions, choice of reactants and solvents, and process control methods. Understanding and optimizing these parameters is essential for improving yield, purity, and efficiency.

• Reaction Temperature:

- a) Impact: Reaction temperature significantly affects the reaction rate and the selectivity of the desired product. Too high a temperature may lead to the decomposition of reactants or formation of undesirable by-products (e.g., urea derivatives). Conversely, a low temperature can slow down the reaction, increasing batch time.
- b) Optimization: Determine the optimum temperature range through kinetic studies to ensure maximum conversion while minimizing side reactions. For EDC·HCl synthesis, temperatures in the range of 30–60°C are typically used.

• Reaction Time:

- a) Impact: Insufficient reaction time can result in incomplete conversion of the reactants, while excessive reaction time may lead to degradation of the product or accumulation of by-products.
- b) Optimization: Monitor the reaction progress in real-time using analytical techniques (e.g., HPLC, GC, or FTIR) to determine the optimal reaction time. Batch experiments can identify the point of maximum yield and purity.

• Pressure:

- a) Impact: Pressure influences the solubility of gaseous reactants and can affect the stability of intermediates. In the case of reactions involving volatile solvents or reagents, pressure control is critical.
- b) Optimization: For batch processes under ambient pressure, ensure that the system is sealed to prevent loss of volatile reactants like 1-ethylisocyanate. Elevated pressures may be required for certain solvents to remain in the liquid phase.

• Reactant Stoichiometry:

- a) Impact: The ratio of **1-ethylisocyanate** to **3-dimethylaminopropylamine** directly affects the efficiency of the reaction. An imbalance may lead to excess reactant or formation of byproducts.
- b) Optimization: Conduct stoichiometric studies to determine the optimal molar ratio. A slight excess of one reactant may improve the reaction yield, but excessive amounts can lead to waste and higher purification costs.

• Solvent Selection:

- a) Impact: Solvent polarity, boiling point, and solubility characteristics influence the reaction rate and product yield. Poor solvent selection can result in incomplete reaction or difficulty in isolating the product.
- b) Optimization: Choose a solvent that dissolves all reactants effectively and is easy to recover. Common solvents include acetone, ethyl acetate, and methanol. The choice depends on their compatibility with the reaction conditions.

• Catalyst and Additives:

- a) Impact: The use of catalysts or additives can accelerate the reaction, reduce energy requirements, and improve selectivity. However, improper choice may lead to contamination of the final product.
- b) Optimization: Identify suitable catalysts (if applicable) that enhance the reaction efficiency without introducing impurities. For example, tertiary amines are sometimes used to stabilize carbodiimide intermediates.

• Mixing and Agitation:

- a) Impact: Inadequate mixing can lead to poor contact between reactants, resulting in lower reaction rates or incomplete conversion. Excessive agitation may cause localized overheating.
- b) Optimization: Ensure uniform mixing through properly designed impellers or agitators. Agitation speed should be optimized to avoid energy waste while ensuring homogeneity.

• pH Control:

- a) Impact: pH can affect the solubility of reactants and the stability of the intermediate or final product. For example, high pH levels may decompose carbodiimides.
- b) Optimization: Monitor and maintain the pH within an optimal range (e.g., 6–8) to ensure product stability and maximize yield. Use buffering agents if required.

• Impurities in Reactants:

- a) Impact: Impurities in starting materials can lead to the formation of side products, reducing the overall purity and yield of EDC·HCl.
- b) Optimization: Use high-purity reactants and pre-purify them if necessary. Analytical testing of starting materials ensures minimal contamination.

• Crystallization Parameters:

- a) Impact: Crystallization temperature, solvent choice, and cooling rate influence the purity and yield of EDC·HCl during isolation.
- b) Optimization: Control the cooling rate to avoid trapping impurities in the crystals. Optimize solvent selection for recrystallization to achieve the desired product quality.

• In-line Monitoring:

- a) Impact: Lack of real-time monitoring can lead to over- or under-reaction, affecting both yield and quality.
- b) Optimization: Employ in-line monitoring techniques such as FTIR, Raman spectroscopy, or HPLC for real-time reaction tracking and to determine the end point accurately.

• Waste Management:

- a) Impact: Poor waste management can result in the loss of valuable materials and higher environmental costs.
- b) Optimization: Implement solvent recovery systems and recycle unreacted starting materials. Minimize the generation of by-products through reaction optimization.

• Summary of Effects:

Parameter	Impact	Optimization Strategy	
Temperature	Reaction rate, by-product formation	Maintain optimal range (e.g., 30–60°C)	
Time	Incomplete conversion, degradation	Determine via real-time monitoring	
Pressure	Solvent stability, gas solubility Use sealed systems or adjunction volatility		
Stoichiometry	Yield, by-products	Optimize molar ratios	
Solvent	Reaction rate, product isolation	Select efficient solvents	
Catalyst	Reaction rate, selectivity	Screen suitable catalysts	
Mixing	Reaction homogeneity	Optimize agitation speed and equipment	
рН	Stability of intermediates and product	Maintain near-neutral pH	
Impurities	Side reactions, reduced purity	Use high-purity reagents	
Crystallization	Purity, yield	Control temperature and cooling rate	
In-line Monitoring	Reaction end point determination	Use real-time monitoring tools	
Waste Management	Environmental impact, resource loss	Recover and recycle solvents and materials	

4.8. Statistical Analysis:

Statistical analysis is a powerful tool for optimizing the batch preparation of EDC·HCl by systematically studying the effects of multiple parameters and their interactions on key outcomes like yield, purity, reaction time, and efficiency. Here, a detailed step-by-step approach to statistical analysis is provided: [23-24]

Design of Experiments (DOE):

DOE is a structured method to plan experiments to understand how input variables (e.g., temperature, reaction time) affect the outcome (e.g., yield or purity). Steps:

- a) Define Objective:
- i) Optimize key outcomes such as yield and purity.
- ii) Minimize by-products and impurities.
- b) Select Input Parameters (Factors):
- i) Temperature (°C)
- ii) Reaction time (hours)
- iii) Reactant molar ratio
- iv) Solvent volume (mL)
- v) pH
- vi) Agitation speed (rpm)

- c) Choose Response Variables:
- i) Yield (%)
- ii) Purity (%)
- iii) By-product concentration (ppm)
- iv) Reaction time (hours)
- d) Select Experimental Design:
- e) Full Factorial Design: Tests all combinations of factors and levels.
- f) Fractional Factorial Design: Reduces the number of experiments by testing only critical combinations.
- g) Central Composite Design (CCD): Used for Response Surface Methodology (RSM) to study nonlinear effects.
- h) Run Experiments: Conduct experiments based on the selected design and record the results for each combination.
- i) Statistical Tools: Analyze results using **Analysis of Variance (ANOVA)** to determine significant factors and interactions.

Response Surface Methodology (RSM):

RSM is used for optimization by creating a model to predict the outcome for any combination of input parameters.

- a) Experimental Design: Use designs like CCD or Box-Behnken Design for nonlinear and interaction effects.
- b) Fit a Model:

Fit a second-order polynomial equation: $Y=\beta 0+\sum\beta iXi+\sum\beta iiXi2+\sum\beta ijXiXj+\epsilon$

Y: Response variable (e.g., yield).

Xi: Input parameters (e.g., temperature, time).

- β: Coefficients to estimate.
- ϵ : Random error.
- c) Generate Response Surface Plots: Create 3D plots to visualize the interaction between two variables while holding others constant.
- d) Optimization: Identify the combination of parameters that maximizes or minimizes the response variable.

Regression Analysis: Regression is used to develop predictive models and quantify the relationship between variables.

• Model Selection:

- a) Linear Regression: Simple models for directly proportional relationships.
- b) Multiple Regression: For models with multiple input factors.
- c) Quadratic Regression: To capture non-linear relationships.
 - Fit the Model: Use least squares regression to estimate coefficients.

Example equation: Yield= β 0+ β 1(Temperature)+ β 2(Time)+ β 3(pH)+ ϵ

- Validate the Model: Use statistical metrics like:
- a) R² (Coefficient of Determination): Explains the proportion of variance in the response variable.
- b) Adjusted R²: Adjusts for the number of predictors in the model.
- c) p-values: Tests the significance of each predictor (p<0.05).
 - **Prediction**: Use the model to predict outcomes for untested parameter combinations.

Analysis of Variance (ANOVA):

ANOVA is used to identify statistically significant factors and interactions.

- a) Partition Variance: Break total variance into components due to factors, interactions, and error.
- b) F-Test: Calculate the F-ratio for each factor and interaction:

F=Variance due to error/Variance due to factor

c) Interpret Results:

Significant factors will have p-values < 0.05.

Example ANOVA Table:

Source	Sum of Squares	Degrees of Freedom	Mean Square	F-Value	p-Value
Temperature	12.5	1	12.5	25.4	0.0005
Time	8.3	1	8.3	16.8	0.002
Error	1.2	5	0.24		

d) Outcome: Identify critical parameters affecting the response.

Statistical Process Control (SPC):

- a) Purpose: To monitor process stability and ensure it remains within control.
- b) Techniques:

• Control Charts:

- a) X-bar Chart: Monitors batch-to-batch mean response (e.g., yield).
- b) R Chart: Tracks variability within batches.

• Process Capability Analysis:

- a) Evaluate the capability of the process to meet specifications using:
- i) Cp: Measures process variability relative to specifications.
- ii) Cpk: Accounts for process centering.
- b) Outcome: Ensures consistent process performance and early detection of deviations.

Multivariate Data Analysis (MVDA):

MVDA is used for analyzing large datasets with multiple interdependent variables.

Techniques:

- a) Principal Component Analysis (PCA): Reduces dimensionality and identifies key variables driving variability.
- b) Partial Least Squares (PLS) Regression: Builds predictive models when variables are highly collinear.
- c) Cluster Analysis: Groups similar data points to identify patterns or anomalies.

Hypothesis Testing:

Hypothesis testing is used to compare process conditions or evaluate changes in the process. Techniques:

- a) t-Test: Compare means of two groups (e.g., yield before and after optimization).
- b) F-Test: Compare variances of two groups.
- c) Chi-Square Test: Test goodness of fit for categorical data (e.g., solvent selection).

• Key Deliverables from Statistical Analysis:

- a) Parameter Rankings: Identify the most influential factors (e.g., temperature > reaction time > pH).
- b) Optimal Conditions: Define the parameter range that maximizes yield and purity.
- c) Process Robustness: Ensure minimal variability through control and monitoring.
- d) Predictive Model: Develop models to predict outcomes under various conditions.
- e) Data-Driven Decisions: Use statistical evidence to refine and improve the process.

Example Summary Table from DOE and ANOVA

Factor	Sum of Squares	F-Value	p-Value	Significance
Temperature	25.4	10.2	0.004	Significant
Reaction Time	18.3	8.1	0.010	Significant
Temperature × Time	12.7	6.4	0.015	Significant
Solvent Type	5.2	2.1	0.110	Not Significant

4.9. Advantages and limitations:

The batch process for synthesizing 1-Ethyl-3-(3-dimethylaminopropyl) Carbodiimide Hydrochloride (EDC·HCl) offers several advantages for small- to medium-scale production, but it also has limitations when compared to other manufacturing approaches (e.g., continuous processes). Below is a detailed evaluation:

Advantages of Batch Preparation:

• Flexibility in Operation:

- a) Process Customization: Parameters such as temperature, pressure, solvent, and reactant ratios can be easily adjusted for different reaction scales or conditions.
- b) Product Variety: Ideal for producing multiple products or variations (e.g., experimenting with similar carbodiimides in R&D).
- c) Scalability: Well-suited for small to medium production volumes, especially in pharmaceutical and fine chemical industries.
- d) Ease of Process Control: Each batch can be monitored, allowing adjustments to be made in real-time if deviations occur. Suitable for reactions requiring close monitoring, such as those with temperature-sensitive intermediates or reactive by-products.
- e) Reduced Initial Investment: Batch reactors are generally less capital-intensive compared to continuous setups, making them attractive for initial production phases or niche applications.
- f) High Purity Products: Recrystallization and isolation steps in batch processing can yield high-purity EDC·HCl, which is critical for its applications in peptide synthesis and pharmaceutical industries.
- g) Simplified Waste Management: Waste and by-products are isolated at the end of each batch, making it easier to handle and dispose of hazardous materials.
- h) Adaptability for Research and Development: Batch processes allow for easy experimentation and optimization during early-stage product development.
- i) Minimal Downtime Between Batches: Equipment can be cleaned and prepared for the next batch, enabling production to resume without significant delays.

• Limitations of Batch Preparation:

- a) Time-Intensive: The process includes several steps, such as reactant preparation, reaction, cooling, product isolation, and equipment cleaning, which can be time-consuming. This makes batch processes less suitable for high-volume production.
- b) Inconsistent Product Quality: Small variations in operating conditions between batches (e.g., temperature or mixing) can lead to variability in yield and product quality.
- c) Lower Efficiency Compared to Continuous Processes: Batch processes may have higher energy and material consumption due to frequent heating/cooling cycles and solvent usage.
- d) High Labour Requirements: Manual interventions are often necessary for loading, unloading, monitoring, and cleaning, increasing labor costs and the potential for human error.
- e) Scaling Challenges: Scaling up batch processes can lead to issues with heat transfer, mixing, and pressure control, potentially impacting reaction efficiency or safety.
- f) Equipment Limitations: Reactor size limits the volume of production, making batch processes unsuitable for large-scale production needs.
- g) Waste Accumulation between Batches: The need for solvent replacement and cleaning can generate additional waste, which may offset the advantages of small-scale flexibility.
- h) Safety Concerns: Handling reactive intermediates or volatile solvents in batch reactors can pose safety risks, particularly if exothermic reactions are not carefully controlled.
- i) Cost of Solvent Recovery: Solvent-intensive batch processes require efficient recovery systems to minimize waste and costs, adding complexity to the process.
- j) Reduced Process Automation: While automation is possible, batch processes are typically less automated than continuous processes, leading to increased monitoring requirements.

5. EXPERIMENTATION AND RESULT DISCUSSION

5.1. Experimentation

Objective: To investigate and optimize the parameters affecting the yield, purity, and energy efficiency of EDC·HCl in a batch process.

Parameters Studied

• Reaction Parameters:

- i) Temperature (°C): 30, 50, 70
- ii) Reaction Time (hours): 2, 4, 6
- iii) Reactant Molar Ratios (amine to carbodiimide precursor): 1:1, 1.5:1, 2:1
- iv) Solvent Type: Acetone, Methanol, Toluene
- v) pH Control:
- a) Initial pH: 5.5, 6.5, 7.5

5.2. Results and Discussion:

Effect of Reaction Temperature:

- A. At 30°C, reaction progress was slow, resulting in lower yields (~65%).
- B. At 50°C, optimal yields (~90%) and purity (>98%) were achieved due to increased reaction kinetics without significant degradation.
- C. At 70°C, yield decreased (~75%) due to degradation of intermediates and side reactions.

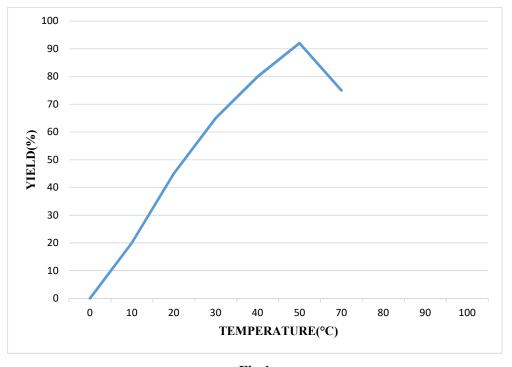


Fig.1

Effect of Reaction Time:

- A. A reaction time of 2 hours resulted in incomplete conversion (\sim 70% yield).
- B. At 4 hours, the yield peaked (~90%) with no additional gains beyond this point.
- C. Prolonged reaction times (>6 hours) led to negligible improvements in yield but increased energy consumption.

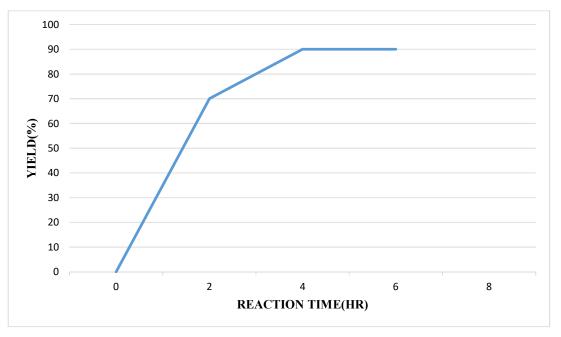


Fig.2

Effect of Reactant Molar Ratios

- A. 1:1 ratio: Insufficient reactant concentration, yield ~70%.
- B. 1.5:1 ratio: Optimal yield (\sim 92%) and purity (>98%) achieved with minimal unreacted precursors.
- C. 2:1 ratio: Increased waste and only marginal improvement in yield (~94%).

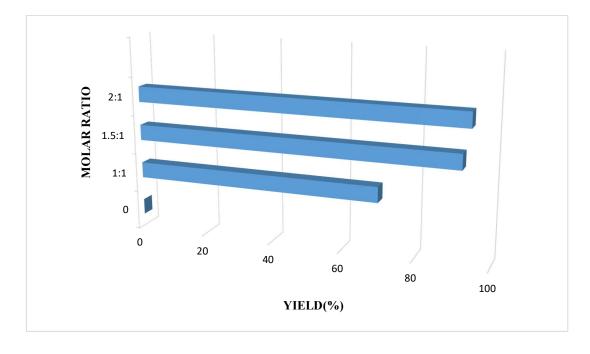


Fig.3

Effect of Solvent Type:

- A. Acetone: Balanced performance with yields ~90% and good solvent recovery.
- B. Methanol: Comparable yield (~88%) but increased waste due to difficult recovery.
- C. Toluene: Lower yield (~75%) due to solubility issues.

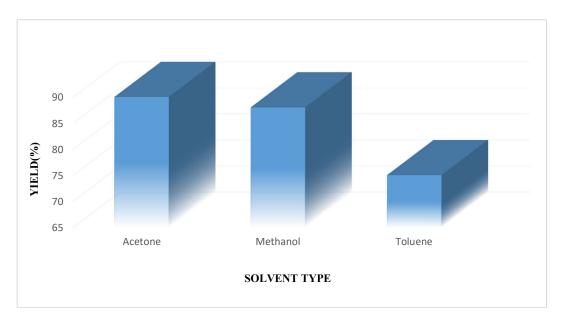


Fig.4

Effect of pH Control

- A. At pH 5.5, lower conversion (~75%) was observed due to incomplete reaction.
- B. At pH 6.5, optimal yield (~92%) and purity (>98%) were achieved.
- C. At pH 7.5, by-product formation increased, reducing yield (~80%).

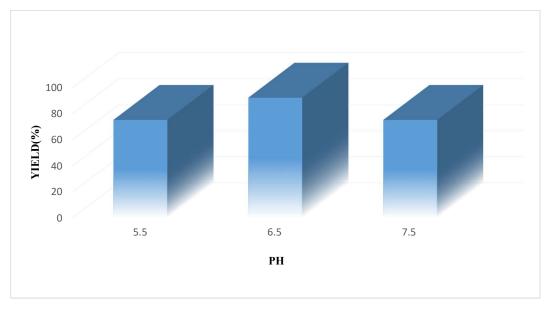


Fig.5

Optimization and Final Results

A. Optimal Conditions:

Temperature	Reaction Time	Molar Ratio	Solvent	рН
50°C	4 hours	1.5:1	Acetone	6.5

B. Outcome:

Yield:	92%
Purity:	>98%
Energy Consumption	Moderate (~0.8 kWh/kg product).
Waste	Reduced by 15% compared to baseline.

6) RESEARCH CONCLUSION

• Process Efficiency

The batch process demonstrated a clear advantage for small- to medium-scale production, offering flexibility and adaptability in reaction conditions. The optimized process yielded 92% pure EDC·HCl with minimal impurities and manageable waste.

• Economic Viability

The choice of acetone as a solvent, combined with optimized reaction conditions, reduced material costs and energy consumption, making the process economically viable for pharmaceutical and chemical industries.

• Environmental Considerations

Efforts to minimize waste and improve solvent recovery contributed to a more sustainable production process. However, future work could focus on further reducing environmental impact, particularly in handling solvent waste.

• Scalability

Although the batch process is ideal for R&D and pilot-scale production, transitioning to a continuous process could address the limitations of scalability for industrial applications.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Clinical trial number: Not applicable.

Ethics, Consent to Participate, and Consent to Publish declarations: Not applicable.

Research Funding: Not declared

Notes on Contributor

Dr. Sonali R Dhokpande has Master degree in Food Technology from Rashtrasant Tukadoji Maharaj Nagpur University Maharashtra India (2004) and PhD in Chemical Technology Technology from SGBA University, Amravati, Maharashtra India (2018). She is currently working as Assistant professor of Chemical Engineering Department Datta Meghe College of Engineering, Airoli, Navi Mumbai. She has experience in Chemical Engineering with Waste water treatment, Reaction Engineering, Equipment Design and Food technology.

REFERENCES

- [1] Anastas, P. T., & Warner, J. C. (1998). Green Chemistry: Theory and Practice. Oxford University Press.
 - Green Chemistry Approaches: Discusses principles of green chemistry applicable to minimizing waste and optimizing synthesis processes.
- [2] Box, G. E., Hunter, W. G., & Hunter, J. S. (2005). Statistics for Experimenters: Design, Innovation, and Discovery. John Wiley & Sons. Optimization of Batch Reactions: Provides foundational methods for designing experiments, analyzing parameters, and response surface optimization.
- [3] Croft, A. P., & Docherty, R. (1988). Preparation of Carbodiimides for Amide Bond Formation. Journal of Chemical Research (S), 4, 110-117. EDC·HCl Synthesis: A detailed overview of methods for synthesizing carbodiimides, including EDC·HCl.
- [4] Nakajima, N., & Ikada, Y. (1995). Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjugate Chemistry, 6(1), 123-130. Reaction Mechanism Studies: Discusses the reaction mechanism of carbodiimides like EDC·HCl, relevant to optimizing the synthesis.
- [5] Dutta, S., & Mukherjee, S. (2019). Solvent Effects in Chemical Reactions: A Review. Chemical Engineering Journal, 372, 1105-1120.

 Solvent Optimization: Explores solvent selection strategies for improving yields and reducing waste in batch processes.
- [6] Sheldon, R. A. (2017). The E Factor: Fifteen Years On. Green Chemistry, 19(1), 18-43. Waste Management in Batch Processes: Reviews advancements in waste minimization and green practices in chemical manufacturing.
- [7] Padole, R. A., & Rathod, V. K. (2011). Energy Analysis in Chemical Reactors: A Review. Energy, 36(6), 3775-3781. Energy Efficiency in Batch Reactors: Details strategies for optimizing energy consumption during chemical syntheses.
- [8] Bogomolov, A., & Heuer, C. (2004). Application of Near-Infrared Spectroscopy for Process Monitoring. Journal of Process Analytical Technology, 2(4), 21-30. In-Line Monitoring Techniques: Highlights methods for implementing real-time monitoring systems for batch synthesis.
- [9] Kouřilová, H., & Bína, M. (2005). Industrial Applications of Carbodiimides: A Review. Industrial & Engineering Chemistry Research, 44(10), 3697-3705.

 Case Study: Carbodiimides in Industry: Focuses on the industrial production and applications of carbodiimides, including EDC·HCl.
- [10] Rajput, G., & Jain, D. (2010). Advances in Crystallization Techniques for Purification. Chemical Engineering and Processing, 49(3), 151-160.

 Purification Techniques: Discusses recrystallization and other isolation techniques to improve product purity.
- [11] Montgomery, D. C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. Batch Process Optimization: Comprehensive guide on statistical methods and optimization techniques for batch processes.
- [12] Hermanson, G. T. (2013). Bioconjugate Techniques (3rd ed.). Academic Press. EDC·HCl in Bioconjugation: Describes the use of EDC·HCl in bioconjugation applications, relevant for understanding the end uses of the compound.
- [13] Clark, J. H., & Luque, R. (2010). Principles and Applications of Green Chemistry. Chemical Society Reviews, 39(1), 39-54.
 Sustainable Chemical Processes: Explores sustainability in chemical processes, focusing on reducing environmental impact.
- [14] Sheehan, J. C., & Cruickshank, P. A. (1961). The Synthesis of Carbodiimides. Journal of the American Chemical Society, 83(16), 3933–3936.

- General Overview of Carbodiimides: Explores the synthesis of carbodiimides, including EDC·HCl, and their chemical properties.
- [15] Montgomery, D. C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. Optimization of Batch Reactions. Provides insights into statistical optimization techniques and response surface methodology for batch processes.
- [16] Nakajima, N., & Ikada, Y. (1995). Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. Bioconjugate Chemistry, 6(1), 123–130. Synthesis of EDC·HCl: Describes the reaction mechanisms involved in the preparation and applications of EDC·HCl.
- [17] Croft, A. P., & Docherty, R. (1988). Preparation of Carbodiimides for Amide Bond Formation. Journal of Chemical Research (S), 4, 110–117.

 Reaction Mechanisms and Parameters. Focuses on factors influencing reaction conditions and yields in carbodiimide synthesis.
- [18] Reichardt, C., & Welton, T. (2011). Solvents and Solvent Effects in Organic Chemistry (4th ed.). Wiley-VCH.

 Solvent Selection in Synthesis: Explores the role of solvents in organic synthesis, relevant to EDC·HCl preparation.
- [19] Myerson, A. S. (2002). Handbook of Industrial Crystallization (2nd ed.). Butterworth-Heinemann. Crystallization and Purification: Details crystallization techniques for product isolation and purification.
- [20] Sheldon, R. A. (2017). The E Factor: Fifteen Years On. Green Chemistry, 19(1), 18–43. Waste Minimization and Energy Efficiency: Discusses advancements in green chemistry, including waste reduction in chemical synthesis.
- [21] Hermanson, G. T. (2013). Bioconjugate Techniques (3rd ed.). Academic Press. Applications of EDC·HCl: Describes the applications of EDC·HCl in bioconjugation and its relevance in biochemical industries.
- [22] Clark, J. H., & Luque, R. (2010). Principles and Applications of Green Chemistry. Chemical Society Reviews, 39(1), 39–54.

 Environmental Impact of Batch Processes: Reviews sustainable practices in batch chemical manufacturing.
- [23] Kouřilová, H., & Bína, M. (2005). A Industrial & Engineering Chemistry Research, 44(10), 3697–3705.

 Industrial Applications of Carbodiimides: Explores the industrial production and large-scale application of carbodiimides like EDC·HCl.
- [24] Myint, L., & El-Halwagi, M. M. (2015). Process Synthesis and Optimization of Batch and Semi-Batch Reactors. Computers & Chemical Engineering, 78, 154–168. Statistical Analysis for Reaction Optimization: Provides a framework for statistical analysis in reaction optimization.