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Abstract 

The rapid growth of Internet of Things (IoT) devices in 5G and upcoming networks has resulted 
in a heightened need for communication systems that are dependable, energy-efficient, and 
capable of scaling effectively. Two promising approaches have surfaced as potential solutions: 
Simultaneous Wireless Information and Power Transfer (SWIPT) and optimization utilizing 
Q-learning. This study offers a comprehensive examination of SWIPT and Q-learning methods 
in the context of 5G-IoT systems. SWIPT is centered on the extraction of energy from RF 
signals, whereas Q-learning prioritizes real-time adaptive decision-making through the 
application of reinforcement learning methods. Experimental simulations evaluate both 
approaches according to criteria such as energy efficiency, packet delivery ratio (PDR), 
latency, and throughput. The findings indicate that Q-learning outperforms SWIPT in dynamic 
and resource-constrained environments, achieving energy efficiency rates of up to 85% and a 
packet delivery ratio of 94%. This study highlights the limitations of conventional harvesting 
models like SWIPT and advocates for the broader adoption of sophisticated learning 
algorithms, such as Q-learning, in upcoming wireless networks. 

Keywords: 5G-IoT, Q-Learning, SWIPT, Energy Efficiency, Reinforcement Learning, 
Resource Management 

1. Introduction 
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The progress of 5G technologies has sparked the extensive rollout of Internet of Things (IoT) 
applications, facilitating intelligent automation in sectors such as healthcare, agriculture, 
industry, and smart cities. With the rapid increase in interconnected devices, it is becoming 
increasingly important to guarantee dependable connectivity, low latency, and extended device 
functionality. Nonetheless, numerous IoT devices possess inherent limitations in resources—
restricted in computational power and energy supply—creating considerable obstacles for the 
sustainable design of 5G-IoT networks. 

Simultaneous Wireless Information and Power Transfer (SWIPT) has surfaced as a hardware-
focused method to extend device functionality by allowing the simultaneous transmission of 
energy and data across a common radio frequency spectrum. Although they present an 
appealing concept, SWIPT systems frequently encounter real-world limitations, including 
inefficient energy harvesting, vulnerability to propagation loss, and challenges in managing 
interference. Their limitations hinder their use in dynamic or large-scale 5G settings. 

In contrast, Q-learning, which is a type of model-free reinforcement learning, provides a 
software-based approach that adjusts in real-time to varying network conditions. Formulating 
the optimization problem as a Markov Decision Process (MDP) allows Q-learning to facilitate 
intelligent, data-driven decisions regarding resource allocation, such as energy management, 
beamforming control, and link adaptation. This approach based on learning is especially 
appropriate for the dynamic, diverse, and time-sensitive conditions typical of 5G-IoT networks. 

This study offers a comparative analysis of SWIPT and Q-learning frameworks, focusing on 
essential performance metrics such as energy efficiency, packet delivery ratio (PDR), system 
latency, and throughput. Using MATLAB simulations and graphical analysis, we show that Q-
learning reliably outperforms in adaptability and overall system optimization. Our research 
emphasizes the increasing importance of machine learning in future wireless networks, 
especially concerning energy-efficient IoT communication in practical applications. 

 

2. Literature Survey 

As 5G-enabled IoT networks have developed, intelligent and energy-efficient communication 
technologies have become necessary.  Recent research has seen the emergence of two main 
paradigms: Q-learning-based optimization frameworks and Simultaneous Wireless 
Information and Power Transfer (SWIPT).  Although both deal with performance and energy 
economy in IoT environments, there are notable differences in their approaches and efficacy.  
This section examines leading studies, emphasizing the advantages and disadvantages of each 
technology to establish a basis for an energy-efficient model in 5G. 

 SWIPT has been extensively investigated as a physical-layer approach that facilitates the 
simultaneous transmission of energy and data through a common wireless medium.  A new 
biased-FSK waveform design has been proposed to improve power conversion efficiency in 
low-power IoT nodes [1].  The technique showed enhanced signal modulation for energy 
harvesting; however, it fell short in terms of adaptability in dynamic network conditions.  In a 
similar vein, a multi-tone PSK approach is utilized to minimize ripple voltage losses in SWIPT 
circuits [2].  Although these methods excel in optimizing signals, they are fundamentally reliant 
on hardware and provide restricted adaptability in real-time scenarios. 
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 In contrast, Q-learning, which is a model-free reinforcement learning algorithm, has gained 
traction because of its ability to make dynamic decisions.  The research introduced a system 
utilizing Q-learning for resource allocation in networks enabled by SWIPT, where the agent 
adapted transmission parameters according to feedback from the environment [3].  The 
algorithm demonstrated a notable improvement over conventional fixed-power SWIPT setups 
regarding throughput and the longevity of devices.  This finding highlights the benefits of 
systems based on learning in diverse and changing network environments. 

 Additionally, by projecting interference into null areas, Cheng Luo et al.'s low-complexity 
beamforming technique for SWIPT systems enhanced signal reception [4].  However, the 
approach's scalability is limited because it relied on predetermined network topologies and 
unchanging channel conditions.  Conversely, a different Q-learning method utilized a Markov 
Decision Process (MDP) framework to dynamically enhance energy distribution among IoT 
nodes.  This framework, confirmed via simulation, resulted in a device lifespan increase of up 
to 40% and a throughput enhancement of 2.7% when compared to methods based on Deep Q-
learning (DQL) and Particle Swarm Optimization (PSO) [5].  Furthermore, when energy 
limitations are intensified by erratic traffic and mobility trends, Q-learning shows a notable 
advantage compared to SWIPT.  A recent study from 2025 explored the use of Q-learning for 
adaptive beamforming in massive MIMO environments. This approach facilitates intelligent 
handover, addresses interference mitigation, and tackles latency control challenges that SWIPT 
alone is unable to manage effectively [6]. 

In conclusion, the existing research highlights an increasing focus on both SWIPT and Q-
learning.  SWIPT continues to offer benefits at the physical layer for limited IoT settings, 
especially in scenarios where energy harvesting is possible.  Nonetheless, its limited flexibility 
and dependence on static circuitry diminish its efficacy in real-time, large-scale applications.  
Q-learning, conversely, brings a level of intelligence to the management of network resources, 
allowing systems to optimize themselves in the face of uncertainty.  The results indicate that 
although SWIPT delivers essential advantages, Q-learning presents a more adaptable, scalable, 
and high-performance option for contemporary 5G-IoT networks, validating its choice as the 
preferred method in this research. 

 

3. Problem Statement 
 
The incorporation of 5G technology into IoT ecosystems introduces a distinct array of 
challenges, mainly focused on the dual demands of energy efficiency and dependable, low-
latency communication. With the increasing presence of IoT devices in various sectors such as 
healthcare and agriculture, these devices frequently function in settings where power sources 
are scarce and need to maintain constant connectivity for the exchange of real-time data. The 
main challenge, then, is to facilitate sustainable device functionality while maintaining efficient 
data transfer in crowded and ever-changing 5G-IoT networks.   
Simultaneous Wireless Information and Power Transfer (SWIPT) has gained significant 
traction as a solution to energy limitations, allowing devices to directly harvest energy from 
RF signals. Although SWIPT presents an intriguing hardware-level approach, it is 
fundamentally static and constrained in its adaptability. The performance experiences a notable 
decline when faced with unpredictable wireless channel conditions and varied network 
requirements. Additionally, SWIPT systems face challenges related to hardware complexity, 
non-linear energy harvesting models, and the complexities involved in dynamically managing 
resources like transmit power and frequency spectrum.  
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Conversely, machine learning techniques, especially Q-learning, provide the capability to learn 
and adjust intelligently to changes in the environment as they occur. Nonetheless, systems that 
utilize Q-learning necessitate clearly defined state spaces, adequate training cycles, and 
computational resources that might not be easily accessible on low-power IoT devices. 
Nonetheless, recent progress in lightweight Q-learning and edge intelligence indicates that 
these limitations may be addressed through cloud offloading and model compression methods.  
Consequently, this study focuses on the primary research inquiry: Is it possible for optimization 
frameworks based on Q-learning to surpass SWIPT regarding energy efficiency, 
communication reliability, and adaptability within 5G-enabled IoT networks? A thorough 
comparison is carried out between the two paradigms, focusing on various performance metrics 
such as energy efficiency, signal quality (SNR), bit error rate (BER), system scalability, and 
adaptability to changing network conditions. 
 

4. Proposed System and Methodology 

The proposed work presents a comparative analysis of Simultaneous Wireless Information and 
Power Transfer (SWIPT) and Q-learning-based optimization for energy and resource 
management in 5G-enabled IoT environments.  

4.1 System Overview 

The approach includes the modeling of communication systems based on SWIPT and Q-
learning for a 5G IoT setting, utilizing MATLAB. The evaluation of each system's performance 
is conducted under different conditions of signal-to-noise ratio (SNR), transmit power, and 
channel interference. The SWIPT model comprises a transmitter, an energy harvester located 
at the receiver end, and employs adaptive modulation schemes. The Q-learning model employs 
a reinforcement learning agent to oversee resources, including power levels, beamforming 
angles, and modulation rates, according to the observed states of the network. 

4.2 SWIPT-Based IoT Model 

In the SWIPT system, Internet of Things devices obtain both data and energy from a base 
station through a common RF signal. The receiver divides the signal into two distinct paths: 
one designated for energy harvesting and the other for data decoding. The mathematical 
representation of the signal is as follows: 

𝑦(𝑡) = ඥ𝑃௧ ⋅ ℎ(𝑡) ⋅ 𝑥(𝑡) + 𝑛(𝑡) 

Where: 

 Pt is the transmitted power, 
 h(t) is the channel gain, 
 x(t) is the transmitted symbol, and 
 n(t) is AWGN (Additive White Gaussian Noise). 
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Figure 1: 5G-IoT SWIPT based model 

SWIPT is simulated using MATLAB’s built-in RF and communication toolbox to measure 
BER, SNR, and harvested power under different distances and channel conditions. 

4.3 Q-Learning-Based IoT Model 

Q-learning functions as a reinforcement learning framework, with the environment 
symbolizing the 5G network and the agent being the IoT device or base station.  
Conditions: Network parameters (SNR levels, traffic load, battery status)  
Responses: Modify power, beam orientation, and modulation technique  
Benefits: Enhancing output and optimizing energy use 

 

Figure 2: Q-learning based IoT model 

The Q-value update rule is: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ቂ𝑟 + 𝛾 max 
௔ᇲ

 𝑄 ( 𝑠ᇱ  , 𝑎ᇱ  ) − 𝑄 ( 𝑠 , 𝑎 )ቃ 

Where: 

 s = current state, a = action taken, 
 α = learning rate, 
 r = reward, γ = discount factor, 
 s′ = next state, a′= optimal future action. 

Q-learning was coded in MATLAB using tabular and MDP-based models. The system learns 
over multiple episodes to minimize energy consumption while maintaining a high packet 
delivery ratio. 

5. Results and Discussion 
A comparative study of SWIPT and Q-learning frameworks for managing energy and data in 
5G-IoT networks. The simulations were conducted with MATLAB, concentrating on assessing 
Bit Error Rate (BER), Signal-to-Noise Ratio (SNR), Energy Efficiency, Packet Delivery Ratio 
(PDR), and Latency while maintaining consistent channel and network conditions. The 
findings indicate that Q-learning exhibits enhanced adaptability and performance when 
compared to conventional SWIPT models, especially in dynamic and resource-limited settings. 
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5.1 Simulation Setup 

The simulation environment considered the following parameters for both systems: 

Parameter Value/Range 

Channel Model Rayleigh Fading 

Transmit Power 10 – 30 dBm 

Modulation Scheme QPSK, 16-QAM 

Bandwidth 10 MHz 

Environment Urban Macro (UMa) model 

IoT Devices 50 static & mobile nodes 

Training Episodes (Q-Learning) 1000 

Both models were subjected to identical variations in user distance, noise levels, and 
interference patterns to ensure a fair comparison. 

5.2 Bit Error Rate (BER) Analysis 

Figure 3 shows the BER performance as a function of SNR: 

The SWIPT system showed a steady decline in BER past 25 dB, attributed to diminished signal 
strength resulting from energy harvesting losses. The Q-learning model, on the other hand, 
adaptively modified modulation schemes and beamforming, resulting in a 30–40% reduction 
in BER across all SNR levels. Therefore, Q-learning adjusts to noisy environments by fine-
tuning transmission parameters, ensuring improved signal integrity. 
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5.3 Energy Efficiency 

Figure 4 highlights the average energy efficiency (EE) of both systems: 

SWIPT reached approximately 68% energy efficiency under optimal signal-to-noise ratio 
conditions, but this figure declined considerably as the distance from the user increased. 
Through the application of Q-learning and intelligent resource management, an average energy 
efficiency of 85% was sustained, even under suboptimal network conditions. Therefore, Q-
learning maintains its performance by preventing excessive transmission and dynamically 
balancing energy with throughput. 

5.4 Throughput and Packet Delivery Ratio 
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Figure 5 compares average throughput (Mbps) and Packet Delivery Ratio (PDR) 

Q-learning achieved a throughput of approximately 100 Mbps and a packet delivery ratio of 
about 95%, surpassing SWIPT by more than 20% in both measures. The PDR of SWIPT 
experienced a significant decline as device mobility increased or the conditions for energy 
harvesting deteriorated. The Static RF-based optimization (SWIPT) struggles in high-mobility 
environments, whereas Q-learning adapts effectively to link variations. 

5.5 Latency Performance 

Figure 6 presents the latency comparison 
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The latency of SWIPT varied, reaching a minimum of 5.6 ms as a result of the static power 
control and modulation configurations. Q-learning reached a latency of approximately 2 ms, 
which is consistent with the URLLC (Ultra-Reliable Low-Latency Communication) standards 
set for 5G. Real-time decision-making in Q-learning enhances low-latency performance, 
making it ideal for mission-critical IoT applications. 

5.6 Scalability and Adaptability 

During stress tests involving as many as 100 IoT devices, the Q-learning framework 
demonstrated a superior ability to adapt, modifying priorities and power levels for each user 
accordingly. SWIPT, nonetheless, exhibited a deficiency in this precise control, leading to 
bottlenecks and an imbalance in energy distribution. 

5.7 Summary of Results 

Metric SWIPT Q-Learning Improvement 

Energy Efficiency (%) 68% 85% +15% 

BER @ 25 dB 1.4×10⁻² 8.7×10⁻³ 38% lower 

Throughput (Mbps) 85 102 +15.5% 

Packet Delivery Ratio 78% 94% +12% 

Latency (ms) 5.6 2.0 -58.3% 

The results confirm that Q-learning consistently outperforms SWIPT in energy efficiency, 
communication reliability, and system responsiveness. 

6. Conclusion 

A comprehensive comparison is conducted between Simultaneous Wireless Information and 
Power Transfer (SWIPT) and optimization techniques based on Q-learning, particularly within 
the framework of 5G-enabled Internet of Things networks. Simultaneous transmission of data 
and energy through SWIPT has emerged as a crucial approach for improving energy 
sustainability within the Internet of Things. Nonetheless, its efficacy is significantly reduced 
in changing network settings, primarily because of rigid allocation methods and an absence of 
immediate responsiveness. Nonetheless, the Q-learning model based on reinforcement learning 
demonstrated superior performance across all essential network metrics, such as Bit Error Rate 
(BER), Signal-to-Noise Ratio (SNR), Throughput, and Packet Delivery Ratio (PDR). By 
leveraging experience, the model is capable of learning and adapting to various network 
conditions in real-time, which enables it to maintain efficient operation even when faced with 
shifting circumstances or periods of high demand. The testing results indicate that Q-learning 
markedly reduces the BER in comparison to SWIPT and enhances throughput by an average 
of 15%, while also ensuring low latency and high reliability. Research conducted over time 
indicates that the performance of SWIPT diminishes due to its rigid protocol design, while the 
Q-learning framework maintains stability. In summary, this research demonstrates that Q-
learning surpasses SWIPT across multiple operational scenarios, offering a superior, more 
adaptable, and energy-efficient method for managing network resources in 5G-IoT settings. 
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7. Future Work 

While Q-learning shows significant promise in enhancing 5G-IoT communication networks, 
there are still numerous paths available for additional investigation:  
 Multi-Agent Reinforcement Learning (MARL) can be utilized to facilitate decentralized 

learning and coordination among various IoT nodes, particularly in densely populated 
network settings.  

 Upcoming models might also gain from hybrid strategies, combining Q-learning with other 
AI methodologies like Deep Q-Networks (DQN) or Proximal Policy Optimization (PPO) 
to enhance policy generation in complex state spaces.  

 An exploration of edge computing units from a hardware standpoint for enhanced decision-
making speed and reduced latency in inference may be considered. Moreover, 
incorporating security awareness into the Q-learning framework may enhance the 
protection of IoT systems against emerging cyber threats while maintaining energy 
efficiency and performance levels.  

 Ultimately, the real-time deployment and validation of Q-learning-based systems within a 
5G testbed or a simulated smart city scenario would represent a significant advancement 
toward practical implementation and readiness for industry application. 
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