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Abstract

The rapid growth of Internet of Things (IoT) devices in 5G and upcoming networks has resulted
in a heightened need for communication systems that are dependable, energy-efficient, and
capable of scaling effectively. Two promising approaches have surfaced as potential solutions:
Simultaneous Wireless Information and Power Transfer (SWIPT) and optimization utilizing
Q-learning. This study offers a comprehensive examination of SWIPT and Q-learning methods
in the context of 5G-IoT systems. SWIPT is centered on the extraction of energy from RF
signals, whereas Q-learning prioritizes real-time adaptive decision-making through the
application of reinforcement learning methods. Experimental simulations evaluate both
approaches according to criteria such as energy efficiency, packet delivery ratio (PDR),
latency, and throughput. The findings indicate that Q-learning outperforms SWIPT in dynamic
and resource-constrained environments, achieving energy efficiency rates of up to 85% and a
packet delivery ratio of 94%. This study highlights the limitations of conventional harvesting
models like SWIPT and advocates for the broader adoption of sophisticated learning
algorithms, such as Q-learning, in upcoming wireless networks.

Keywords: 5G-1oT, Q-Learning, SWIPT, Energy Efficiency, Reinforcement Learning,
Resource Management

1. Introduction
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The progress of 5G technologies has sparked the extensive rollout of Internet of Things (IoT)
applications, facilitating intelligent automation in sectors such as healthcare, agriculture,
industry, and smart cities. With the rapid increase in interconnected devices, it is becoming
increasingly important to guarantee dependable connectivity, low latency, and extended device
functionality. Nonetheless, numerous loT devices possess inherent limitations in resources—
restricted in computational power and energy supply—creating considerable obstacles for the
sustainable design of 5G-IoT networks.

Simultaneous Wireless Information and Power Transfer (SWIPT) has surfaced as a hardware-
focused method to extend device functionality by allowing the simultaneous transmission of
energy and data across a common radio frequency spectrum. Although they present an
appealing concept, SWIPT systems frequently encounter real-world limitations, including
inefficient energy harvesting, vulnerability to propagation loss, and challenges in managing
interference. Their limitations hinder their use in dynamic or large-scale 5G settings.

In contrast, Q-learning, which is a type of model-free reinforcement learning, provides a
software-based approach that adjusts in real-time to varying network conditions. Formulating
the optimization problem as a Markov Decision Process (MDP) allows Q-learning to facilitate
intelligent, data-driven decisions regarding resource allocation, such as energy management,
beamforming control, and link adaptation. This approach based on learning is especially
appropriate for the dynamic, diverse, and time-sensitive conditions typical of 5G-IoT networks.
This study offers a comparative analysis of SWIPT and Q-learning frameworks, focusing on
essential performance metrics such as energy efficiency, packet delivery ratio (PDR), system
latency, and throughput. Using MATLAB simulations and graphical analysis, we show that Q-
learning reliably outperforms in adaptability and overall system optimization. Our research
emphasizes the increasing importance of machine learning in future wireless networks,
especially concerning energy-efficient [oT communication in practical applications.

2. Literature Survey

As 5G-enabled IoT networks have developed, intelligent and energy-efficient communication
technologies have become necessary. Recent research has seen the emergence of two main
paradigms: Q-learning-based optimization frameworks and Simultaneous Wireless
Information and Power Transfer (SWIPT). Although both deal with performance and energy
economy in [oT environments, there are notable differences in their approaches and efficacy.
This section examines leading studies, emphasizing the advantages and disadvantages of each
technology to establish a basis for an energy-efficient model in 5G.

SWIPT has been extensively investigated as a physical-layer approach that facilitates the
simultaneous transmission of energy and data through a common wireless medium. A new
biased-FSK waveform design has been proposed to improve power conversion efficiency in
low-power IoT nodes [1]. The technique showed enhanced signal modulation for energy
harvesting; however, it fell short in terms of adaptability in dynamic network conditions. In a
similar vein, a multi-tone PSK approach is utilized to minimize ripple voltage losses in SWIPT
circuits [2]. Although these methods excel in optimizing signals, they are fundamentally reliant
on hardware and provide restricted adaptability in real-time scenarios.
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In contrast, Q-learning, which is a model-free reinforcement learning algorithm, has gained
traction because of its ability to make dynamic decisions. The research introduced a system
utilizing Q-learning for resource allocation in networks enabled by SWIPT, where the agent
adapted transmission parameters according to feedback from the environment [3]. The
algorithm demonstrated a notable improvement over conventional fixed-power SWIPT setups
regarding throughput and the longevity of devices. This finding highlights the benefits of
systems based on learning in diverse and changing network environments.

Additionally, by projecting interference into null areas, Cheng Luo et al.'s low-complexity
beamforming technique for SWIPT systems enhanced signal reception [4]. However, the
approach's scalability is limited because it relied on predetermined network topologies and
unchanging channel conditions. Conversely, a different Q-learning method utilized a Markov
Decision Process (MDP) framework to dynamically enhance energy distribution among loT
nodes. This framework, confirmed via simulation, resulted in a device lifespan increase of up
to 40% and a throughput enhancement of 2.7% when compared to methods based on Deep Q-
learning (DQL) and Particle Swarm Optimization (PSO) [5]. Furthermore, when energy
limitations are intensified by erratic traffic and mobility trends, Q-learning shows a notable
advantage compared to SWIPT. A recent study from 2025 explored the use of Q-learning for
adaptive beamforming in massive MIMO environments. This approach facilitates intelligent
handover, addresses interference mitigation, and tackles latency control challenges that SWIPT
alone is unable to manage effectively [6].

In conclusion, the existing research highlights an increasing focus on both SWIPT and Q-
learning. SWIPT continues to offer benefits at the physical layer for limited IoT settings,
especially in scenarios where energy harvesting is possible. Nonetheless, its limited flexibility
and dependence on static circuitry diminish its efficacy in real-time, large-scale applications.
Q-learning, conversely, brings a level of intelligence to the management of network resources,
allowing systems to optimize themselves in the face of uncertainty. The results indicate that
although SWIPT delivers essential advantages, Q-learning presents a more adaptable, scalable,
and high-performance option for contemporary 5G-IoT networks, validating its choice as the
preferred method in this research.

3. Problem Statement

The incorporation of 5G technology into IoT ecosystems introduces a distinct array of
challenges, mainly focused on the dual demands of energy efficiency and dependable, low-
latency communication. With the increasing presence of IoT devices in various sectors such as
healthcare and agriculture, these devices frequently function in settings where power sources
are scarce and need to maintain constant connectivity for the exchange of real-time data. The
main challenge, then, is to facilitate sustainable device functionality while maintaining efficient
data transfer in crowded and ever-changing 5G-IoT networks.

Simultaneous Wireless Information and Power Transfer (SWIPT) has gained significant
traction as a solution to energy limitations, allowing devices to directly harvest energy from
RF signals. Although SWIPT presents an intriguing hardware-level approach, it is
fundamentally static and constrained in its adaptability. The performance experiences a notable
decline when faced with unpredictable wireless channel conditions and varied network
requirements. Additionally, SWIPT systems face challenges related to hardware complexity,
non-linear energy harvesting models, and the complexities involved in dynamically managing
resources like transmit power and frequency spectrum.
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Conversely, machine learning techniques, especially Q-learning, provide the capability to learn
and adjust intelligently to changes in the environment as they occur. Nonetheless, systems that
utilize Q-learning necessitate clearly defined state spaces, adequate training cycles, and
computational resources that might not be easily accessible on low-power loT devices.
Nonetheless, recent progress in lightweight Q-learning and edge intelligence indicates that
these limitations may be addressed through cloud offloading and model compression methods.
Consequently, this study focuses on the primary research inquiry: Is it possible for optimization
frameworks based on Q-learning to surpass SWIPT regarding energy -efficiency,
communication reliability, and adaptability within 5G-enabled IoT networks? A thorough
comparison is carried out between the two paradigms, focusing on various performance metrics
such as energy efficiency, signal quality (SNR), bit error rate (BER), system scalability, and
adaptability to changing network conditions.

4. Proposed System and Methodology

The proposed work presents a comparative analysis of Simultaneous Wireless Information and
Power Transfer (SWIPT) and Q-learning-based optimization for energy and resource
management in 5G-enabled loT environments.

4.1System Overview

The approach includes the modeling of communication systems based on SWIPT and Q-
learning for a 5G IoT setting, utilizing MATLAB. The evaluation of each system's performance
is conducted under different conditions of signal-to-noise ratio (SNR), transmit power, and
channel interference. The SWIPT model comprises a transmitter, an energy harvester located
at the receiver end, and employs adaptive modulation schemes. The Q-learning model employs
a reinforcement learning agent to oversee resources, including power levels, beamforming
angles, and modulation rates, according to the observed states of the network.

4.2SWIPT-Based IoT Model

In the SWIPT system, Internet of Things devices obtain both data and energy from a base
station through a common RF signal. The receiver divides the signal into two distinct paths:
one designated for energy harvesting and the other for data decoding. The mathematical
representation of the signal is as follows:

y(®) = P h(®) - x(t) + n(t)

Where:
e Py is the transmitted power,
o h(t) is the channel gain,
e x(t) is the transmitted symbol, and
o 1(t) is AWGN (Additive White Gaussian Noise).
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Figure 1: 5G-IoT SWIPT based model
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SWIPT is simulated using MATLAB’s built-in RF and communication toolbox to measure

BER, SNR, and harvested power under different distances and channel conditions.

4.3 Q-Learning-Based IoT Model

Q-learning functions as a reinforcement learning framework, with the environment
symbolizing the 5G network and the agent being the IoT device or base station.

Conditions: Network parameters (SNR levels, traffic load, battery status)
Responses: Modify power, beam orientation, and modulation technique
Benefits: Enhancing output and optimizing energy use

Environment
(5G loT)

tate —sy

—
Reward —s

Action Agent
(Q-Learning)

Figure 2: Q-learning based [oT model

The Q-value update rule is:

Where:

Q(s,) = Q(s,a) + a [r+ymaxQ(s',a)~Q(s.0)]

s = current state, a = action taken,

r = reward, y = discount factor,

L
e o = learning rate,
[ ]
[ ]

s’ = next state, a’= optimal future action.

Q-learning was coded in MATLAB using tabular and MDP-based models. The system learns
over multiple episodes to minimize energy consumption while maintaining a high packet

delivery ratio.

5. Results and Discussion
A comparative study of SWIPT and Q-learning frameworks for managing energy and data in
5G-IoT networks. The simulations were conducted with MATLAB, concentrating on assessing
Bit Error Rate (BER), Signal-to-Noise Ratio (SNR), Energy Efficiency, Packet Delivery Ratio
(PDR), and Latency while maintaining consistent channel and network conditions. The
findings indicate that Q-learning exhibits enhanced adaptability and performance when
compared to conventional SWIPT models, especially in dynamic and resource-limited settings.
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5.1 Simulation Setup

The simulation environment considered the following parameters for both systems:

Parameter Value/Range

Channel Model Rayleigh Fading

Transmit Power 10 —-30 dBm

Modulation Scheme QPSK, 16-QAM
Bandwidth 10 MHz

Environment Urban Macro (UMa) model
IoT Devices 50 static & mobile nodes
Training Episodes (Q-Learning) | 1000

Both models were subjected to identical variations in user distance, noise levels, and
interference patterns to ensure a fair comparison.

5.2 Bit Error Rate (BER) Analysis

BER vs SNR for SWIPT and Q-Learning Models
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Figure 3 shows the BER performance as a function of SNR:

The SWIPT system showed a steady decline in BER past 25 dB, attributed to diminished signal
strength resulting from energy harvesting losses. The Q-learning model, on the other hand,
adaptively modified modulation schemes and beamforming, resulting in a 30-40% reduction
in BER across all SNR levels. Therefore, Q-learning adjusts to noisy environments by fine-
tuning transmission parameters, ensuring improved signal integrity.
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5.3 Energy Efficiency
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Figure 4 highlights the average energy efficiency (EE) of both systems:

SWIPT reached approximately 68% energy efficiency under optimal signal-to-noise ratio
conditions, but this figure declined considerably as the distance from the user increased.
Through the application of Q-learning and intelligent resource management, an average energy
efficiency of 85% was sustained, even under suboptimal network conditions. Therefore, Q-
learning maintains its performance by preventing excessive transmission and dynamically
balancing energy with throughput.

5.4 Throughput and Packet Delivery Ratio
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Throughput and Packet Delivery Ratio over Time
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Figure 5 compares average throughput (Mbps) and Packet Delivery Ratio (PDR)

Q-learning achieved a throughput of approximately 100 Mbps and a packet delivery ratio of
about 95%, surpassing SWIPT by more than 20% in both measures. The PDR of SWIPT
experienced a significant decline as device mobility increased or the conditions for energy

harvesting deteriorated. The Static RF-based optimization (SWIPT) struggles in high-mobility
environments, whereas Q-learning adapts effectively to link variations.

5.5 Latency Performance
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Figure 6 presents the latency comparison
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The latency of SWIPT varied, reaching a minimum of 5.6 ms as a result of the static power
control and modulation configurations. Q-learning reached a latency of approximately 2 ms,
which is consistent with the URLLC (Ultra-Reliable Low-Latency Communication) standards
set for 5G. Real-time decision-making in Q-learning enhances low-latency performance,
making it ideal for mission-critical IoT applications.

5.6 Scalability and Adaptability

During stress tests involving as many as 100 IoT devices, the Q-learning framework
demonstrated a superior ability to adapt, modifying priorities and power levels for each user
accordingly. SWIPT, nonetheless, exhibited a deficiency in this precise control, leading to
bottlenecks and an imbalance in energy distribution.

5.7 Summary of Results

Metric SWIPT Q-Learning Improvement
Energy Efficiency (%) 68% 85% +15%
BER @ 25 dB 1.4x10 8.7x1073 38% lower
Throughput (Mbps) 85 102 +15.5%
Packet Delivery Ratio 78% 94% +12%
Latency (ms) 5.6 2.0 -58.3%

The results confirm that Q-learning consistently outperforms SWIPT in energy efficiency,
communication reliability, and system responsiveness.

6. Conclusion

A comprehensive comparison is conducted between Simultaneous Wireless Information and
Power Transfer (SWIPT) and optimization techniques based on Q-learning, particularly within
the framework of 5G-enabled Internet of Things networks. Simultaneous transmission of data
and energy through SWIPT has emerged as a crucial approach for improving energy
sustainability within the Internet of Things. Nonetheless, its efficacy is significantly reduced
in changing network settings, primarily because of rigid allocation methods and an absence of
immediate responsiveness. Nonetheless, the Q-learning model based on reinforcement learning
demonstrated superior performance across all essential network metrics, such as Bit Error Rate
(BER), Signal-to-Noise Ratio (SNR), Throughput, and Packet Delivery Ratio (PDR). By
leveraging experience, the model is capable of learning and adapting to various network
conditions in real-time, which enables it to maintain efficient operation even when faced with
shifting circumstances or periods of high demand. The testing results indicate that Q-learning
markedly reduces the BER in comparison to SWIPT and enhances throughput by an average
of 15%, while also ensuring low latency and high reliability. Research conducted over time
indicates that the performance of SWIPT diminishes due to its rigid protocol design, while the
Q-learning framework maintains stability. In summary, this research demonstrates that Q-
learning surpasses SWIPT across multiple operational scenarios, offering a superior, more
adaptable, and energy-efficient method for managing network resources in 5G-IoT settings.
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7. Future Work

While Q-learning shows significant promise in enhancing 5G-IoT communication networks,

there are still numerous paths available for additional investigation:

» Multi-Agent Reinforcement Learning (MARL) can be utilized to facilitate decentralized
learning and coordination among various IoT nodes, particularly in densely populated
network settings.

» Upcoming models might also gain from hybrid strategies, combining Q-learning with other
Al methodologies like Deep Q-Networks (DQN) or Proximal Policy Optimization (PPO)
to enhance policy generation in complex state spaces.

» An exploration of edge computing units from a hardware standpoint for enhanced decision-
making speed and reduced latency in inference may be considered. Moreover,
incorporating security awareness into the Q-learning framework may enhance the
protection of IoT systems against emerging cyber threats while maintaining energy
efficiency and performance levels.

» Ultimately, the real-time deployment and validation of Q-learning-based systems within a
5G testbed or a simulated smart city scenario would represent a significant advancement
toward practical implementation and readiness for industry application.
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