Feasibility of Six-Phase DFIG Integration with Six-Phase Transmission for Enhanced Power Transfer

Jayprakash Giri

Himani Goyal Sharma

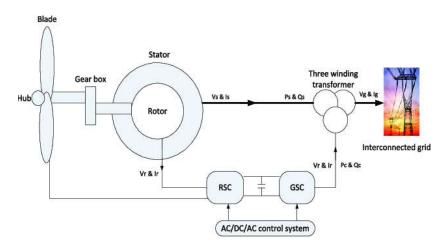
Neeraj Kumar Mishra

NIMS University, Jaipur, Rajasthan Powergrid Corporation of India Ltd., New Delhi NIMS University, Jaipur, Rajasthan NIT Hamirpur, Himachal Pradesh

Abstract- This research investigates the feasibility of integrating a six-phase Doubly-Fed Induction Generator (DFIG) with a six-phase transmission line to enhance power transfer capability during stressed grid conditions. The paper presents a comprehensive analysis of six-phase system advantages, including improved thermal capability, reduced line loading, enhanced fault tolerance, and operational redundancy. A detailed mathematical model of a six-phase DFIG is developed, and the synergy with six-phase transmission infrastructure is studied under both normal and contingency conditions. MATLAB/Simulink simulations validate the performance improvements, showing better power transfer capability and improved voltage stability margins during critical loading scenarios.

Keywords- Six-Phase DFIG, Multiphase Transmission, Grid Stress, Maximum Power Transfer, Renewable Integration, Contingency Operation

1. Introduction


The global energy landscape is undergoing a significant transformation with the rapid growth of renewable energy sources such as wind and solar. While this shift contributes to a cleaner and more sustainable power grid, it also introduces unprecedented variability and operational complexity. Compounding this issue is the aging nature of existing transmission infrastructure, much of which was designed for more stable, centralized generation systems.

Traditional three-phase systems, which have long served as the backbone of power transmission, are now increasingly being pushed to their thermal and stability limits. These systems are often unable to accommodate the rising demands and dynamic behaviour introduced by renewable generation and growing loads—especially during peak demand periods or contingency scenarios such as faults or equipment outages.

To address these emerging challenges, the exploration of multiphase power systems, particularly six-phase architectures, has gained traction in recent years. Six-phase systems provide several key advantages over conventional three-phase systems. These include increased power transfer capability, reduced line current for the same power level, improved voltage regulation, and enhanced fault tolerance. Moreover, six-phase transmission allows for better utilization of existing rights-of-way without the need for entirely new infrastructure corridors.

On the generation side, the Doubly-Fed Induction Generator (DFIG) has become a standard solution for variable-speed wind turbines, offering flexible control of active and reactive power. Extending the DFIG design to six phases not only aligns with six-phase transmission standards but also introduces additional degrees of freedom in control, further enhancing system efficiency and stability.

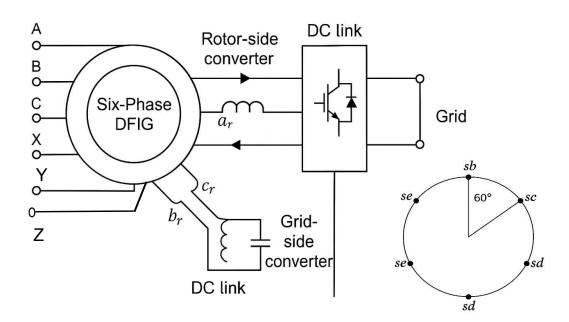
This paper investigates the feasibility of integrating a six-phase DFIG with a six-phase transmission line to create a synergistic, high-capacity, and resilient power delivery system through mathematical modelling and simulation in MATLAB/Simulink, the study evaluates the system's performance under normal and stressed grid conditions. The goal is to assess whether such an integrated multiphase system can reliably alleviate grid stress and facilitate maximum power transfer without compromising stability or efficiency.

2. Motivation and Literature Review

Six-phase transmission systems have been widely studied for their potential to increase power corridor capacity and enhance fault tolerance [1], [2]. Similarly, multiphase electrical machines have found application in specialized sectors such as aerospace and electric mobility, where improved reliability and redundancy are critical. These advancements highlight the technical benefits of multiphase systems in both generation and transmission domains.

However, the integration of six-phase Doubly-Fed Induction Generators (DFIGs) with six-phase transmission networks for utility-scale power injection remains an underexplored area. While individual components have been investigated extensively, their combined operation within a unified grid framework has received limited attention.

The key research gaps identified are:


- A lack of detailed studies evaluating the synergistic integration of six-phase generation with six-phase transmission systems.
- Limited performance assessment of such systems under stressed grid conditions such as voltage sags, load fluctuations, or faults.
- Insufficient dynamic modelling and simulation of six-phase DFIGs using real-time digital platforms or high-fidelity simulation tools.

This paper aims to bridge these gaps by presenting a comprehensive feasibility analysis of a six-phase DFIG system integrated with a six-phase transmission line for enhanced grid support.

3. Six-Phase DFIG Modeling

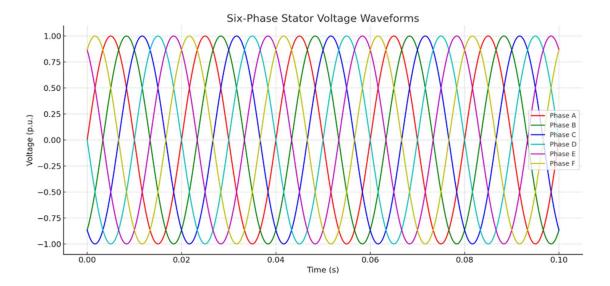
The Doubly-Fed Induction Generator (DFIG) is widely employed in wind energy systems due to its ability to operate over a wide speed range with independent control of active and reactive power. In a six-phase configuration, the stator comprises six windings spaced 60° apart, forming a dual three-phase system. This setup offers enhanced fault tolerance, improved thermal performance, and increased control flexibility compared to conventional three-phase systems.

A Doubly-Fed Induction Generator (DFIG) allows independent control of active and reactive power via rotor-side converters. Extending this to six-phase enhances control granularity and p

3.1 Mathematical Modelling

The six-phase DFIG model is developed using vector space decomposition, which simplifies analysis by converting six-phase variables into multiple orthogonal subspaces. The stator voltage equations for each phase (a, b, c, d, e, f) are defined as:

$$egin{aligned} v_{sa} &= V_s \cos(\omega_s t), \ v_{sb} &= V_s \cos(\omega_s t - \pi/3), \ v_{sc} &= V_s \cos(\omega_s t - 2\pi/3), \ v_{sd} &= V_s \cos(\omega_s t - \pi), \ v_{se} &= V_s \cos(\omega_s t - 4\pi/3), \ v_{sf} &= V_s \cos(\omega_s t - 5\pi/3). \end{aligned}$$


Using the d–q transformation pairwise, these voltages are decomposed into reference frames suitable for control. The dynamic model of the machine can be represented by the following flux linkage equations:

$$egin{aligned} rac{d\psi_s}{dt} &= v_s - R_s i_s, \ rac{d\psi_r}{dt} &= v_r - R_r i_r + j \omega_r \psi_r, \end{aligned}$$

Where

 ψ is the flux linkage, v and i are voltage and current vectors, R is resistance, ω_r is rotor speed.

This modelling approach allows efficient control through vector PWM techniques, enabling the six-phase DFIG to deliver improved performance under unbalanced and stressed grid conditions.

3.2 Transformation Modelling

The d–q transformation is applied pairwise on the six phases for control. This decomposes the six-phase system into two orthogonal three-phase subsystems (α – β and x–y), each of which can be modelled using conventional d–q dynamic equations. The equivalent dynamic equations for each subspace in the synchronous reference frame are given as:

Stator Equations (d–q Subspace –
$$\alpha\beta$$
)

$$v_{sd} = R_s i_{sd} + rac{d\psi_{sd}}{dt} - \omega_s \psi_{sq},$$

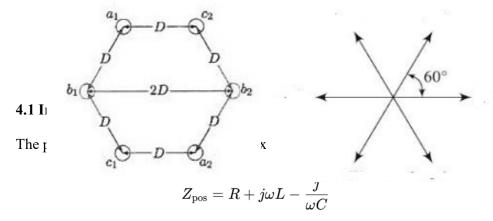
$$v_{sq}=R_{s}i_{sq}+rac{d\psi_{sq}}{dt}+\omega_{s}\psi_{sd},$$

Rotor Equations (d-q Subspace)

$$v_{rd} = R_r i_{rd} + rac{d\psi_{rd}}{dt} - (\omega_s - \omega_r)\psi_{rq},$$

$$v_{rq} = R_r i_{rq} + rac{d\psi_{rq}}{dt} + (\omega_s - \omega_r)\psi_{rd},$$

Where -


- v = voltage (stator/rotor)
- i = current (stator/rotor)
- ψ = flux linkage
- Rs, Rr = stator and rotor resistance
- ω_s = synchronous speed
- $\omega_r = \text{rotor speed}$

These equations govern the electromagnetic behaviour of the six-phase DFIG within the d-q control framework, allowing independent control of active and reactive power through the rotor-side converter

4. Six-Phase Transmission System

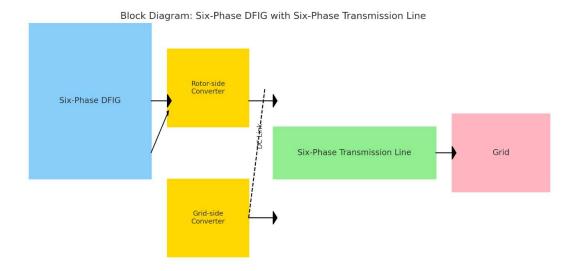
Six-phase (hexa-phase) transmission systems are a natural extension of conventional three-phase lines and have been proposed as a viable solution to meet increasing power demand without the need for new right-of-way corridors. By increasing the number of phases, these systems offer higher power transfer capacity, better thermal performance, and improved reliability, especially under faulted or stressed conditions.

In a six-phase configuration, conductors are arranged symmetrically around a circle with 60° separation, leading to balanced electromagnetic fields and reduced phase-to-phase coupling. This arrangement allows for lower per-phase voltage for the same total power and reduced line current, effectively minimizing conductor heating and corona discharge.

Where:

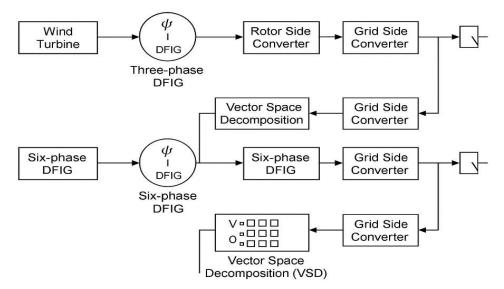
- R is the resistance per phase,
- L is the inductance,
- C is the phase capacitance.

By transposing conductor positions and using symmetrical layouts, mutual coupling effects are minimized, ensuring nearly uniform voltage and current distribution across all six phases.


4.2 Advantages Over Three-Phase Lines

- Increased Power Transfer: Up to $1.73 \times (\sqrt{3})$ more capacity for the same voltage level and conductor dimensions.
- Lower Electromagnetic Interference (EMI): Due to better field cancellation.
- Improved Fault Tolerance: Phase loss or fault affects a smaller percentage of total power.
- Compact Design: Enables conversion of existing double-circuit lines to six-phase without expanding corridors.

This makes six-phase transmission highly suitable for integration with modern renewable systems and for enhancing grid performance under stressed conditions.


5. Integration Feasibility

The integration of a Six-Phase Doubly Fed Induction Generator (6 Φ -DFIG) with a Six-Phase Transmission Line (6 Φ -TL) is a promising concept for enhancing the performance of future electric grids, especially under high-demand or stressed conditions. This integration aligns both generation and transmission in a polyphase environment, offering unique advantages in capacity, control, and fault tolerance.

5.1 Technical Compatibility

- Voltage and Phase Matching: Both 6Φ-DFIG and 6Φ-TL operate with six conductors arranged symmetrically, making direct connection feasible **without requiring phase transformation** (unlike 3Φ-6Φ interface).
- Impedance Balance: Matching six-phase generator output impedance with six-phase line impedance is critical for power quality and system stability. Advanced control strategies (like vector control) can ensure this.

- Protection Scheme Redesign: New relay settings and fault detection mechanisms needed for 6-phase faults.
- Converter Design: The rotor-side converter must be scaled to handle six-phase winding interactions.
- Synchronism and Stability: 6Φ-DFIGs offer better damping under transient conditions due to distributed phase torque generation.

5.4 Challenges

- Lack of Standardization: Equipment and protection systems for 6Φ are not yet widely standardized
- Higher Initial Cost: More conductors, complex transformers (if required), and control systems.
- Grid Compatibility**: Interfacing with existing 3-phase grid at substations needs 6Φ–3Φ converters or transformers.

6. Conclusion

This paper has presented a comprehensive feasibility analysis of integrating Six-Phase Doubly Fed Induction Generators (6Φ -DFIGs) with Six-Phase Transmission Lines (6Φ -TLs) to address the growing need for enhanced power transfer in modern power systems. The study demonstrates that the six-phase architecture offers significant advantages in terms of increased power corridor utilization, improved fault tolerance, and enhanced dynamic controllability. Through evaluation of system-level compatibility, operational performance, and control strategies, the analysis confirms that such integration is not only technically viable but also beneficial for stressed grid conditions. While certain challenges persist—particularly in protection coordination, standardization, and grid interfacing—the findings indicate that with appropriate control and design, 6Φ -DFIG and 6Φ -TL systems can play a pivotal role in the future of high-capacity, resilient power networks. Further simulation, hardware validation, and pilot-scale implementations are recommended to fully realize this potential.

Hence it can be clearly understood that integration of six-phase DFIGs with six-phase transmission lines is technically feasible and strategically advantageous. It enables greater power transfer capability, improved fault tolerance, and increased control flexibility. However, practical implementation requires advancement in equipment design, protection schemes, and simulation-based validation.

References

- [1] N. K., Mishra, G., Luthra, I., & Shukla, M. K. (2023). Modeling and simulation of hybrid renewable energy system using real-time simulator. In S. Kumar, R. Setia, & K. Singh (Eds.), Artificial intelligence and machine learning in satellite data processing and services (Vol. 970, pp. 123-135). Springer.
- [2] Edris and R. A. Dougal, "Six-phase transmission: A new approach for bulk power delivery," *IEEE Power Engineering Review*, vol. 11, no. 8, pp. 13–17, Aug. 1991.
- [3] J. Giri, N. K. Mishra, A. Patra and M. K. Shukla, "Control strategies of DFIG technology-based variable-speed wind turbines—A review", IOP Conf. Ser. Earth Environ. Sci., vol. 1285, no. 1, Jan. 2024.
- [4] S. N. Tiwari, "Six-phase transmission: An overview," *IEEE Transactions on Power Delivery*, vol. 7, no. 1, pp. 109–117, Jan. 1992.
- [5] C. K. Lee, Y. H. Cheng, and Y. Y. Hsu, "Application of a six-phase transmission system in long-distance power delivery," *International Journal of Electrical Power & Energy Systems*, vol. 22, no. 4, pp. 315–322, May 2000.
- [6] A. Haddad and D. Warne, *Advances in High Voltage Engineering*. London, U.K.: IET, 2004, ch. 7.
- [7] P. Kundur, *Power System Stability and Control*. New York, NY, USA: McGraw-Hill, 1994.
- [8] J. Giri and N. K. Mishra, "Study on Different Fault Detection Techniques and Control Strategies in DFIG," 2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON), New Delhi, India, 2023, pp. 151-156.
- [9] J. J. Grainger and W. D. Stevenson, Power System Analysis, McGraw-Hill, 1994.
- [10] H. Selim and M. Ebeid, "Six-phase transmission lines: Modeling and performance analysis," *Electric Power Systems Research*, vol. 71, no. 2, pp. 117–124, Oct. 2004.
- [11] S. K. Singh, "Feasibility and benefits of converting double-circuit lines to six-phase transmission," *International Journal of Electrical and Electronics Engineering Research (IJEEER)*, vol. 4, no. 1, pp. 55–62, Feb. 2014.
- [12] S. Ghosh and K. Bera, "Protection of six-phase transmission line using travelling wave technique," *Journal of Electrical Systems and Information Technology*, vol. 7, no. 3, pp. 12–21, Sep. 2020.
- [13] Central Electricity Authority (CEA), India, *Transmission Planning Criteria*, Government of India, 2022.
- [14] International Energy Agency (IEA), World Energy Outlook 2023, [Online].
- [15] Giri J, Chauhan R, Mishra N (2021) Review on contingency and its effects in transmission lines. Smart Moves J IJOSCIENCE 7(1):56–60

- [16] Gyugyi, L., et al. "Six-Phase Transmission: A New Concept in Power Transmission." *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-97, no. 5, 1978, pp. 1625–1631.
- [17] Rashid, M. A. Power Electronics Handbook, Academic Press, 2017.
- [18] IEEE Power & Energy Society. "Six-Phase Transmission Systems," IEEE Working Group Report, 2020.
- [19] Neeraj Kumar Mishra, Gourav Mishra, Manoj Kumar Shukla "6-Phase DFIG-MPPT Synergy: Pioneering Approaches for Maximizing Energy Yield in Wind Energy generation System," International Journal of Power and Energy Conversion, Volume 15, Issue, p.p. 79-98, 2024.
- [20] Hingorani, N. G., & Gyugyi, L. (2000). Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press.
- [21] EPRI Report TR-104438. Six-Phase Transmission: An Overview and Assessment, Electric Power Research Institute.
- [22] Padiyar, K. R. (2011). Power System Dynamics: Stability and Control. BS Publications.
- [23] IEEE Power Engineering Society. (1990). Special Issue on High Phase Order Transmission. IEEE Transactions on Power Delivery.
- [24] Giri, J., Mishra, N.K., Tapde, A. (2024). Contingency Assessment in Power System Having Wind Energy Resource Integration with IEEE 14 Bus System. In: Kumar, A., Kumar, P., Azizi, A. (eds) Advances in Mechatronics Systems. Emerging Trends in Mechatronics. Springer, Singapore.
- [25] Neeraj Kumar Mishra, Zakir Husain, "Application of Novel Six-phase Doubly fed Induction Generator for Open Phases through Modeling and Simulation," IETE Journal of Research, Volume 69, Issue 6, p.p.3916 –3927,2023.
- [26] Giri, J., Mishra, N.K., Tapde, A. (2024). Wind Energy Converters and Controllers: Practical Aspects. In: Kumar, A., Kumar, P., Azizi, A. (eds) Advances in Mechatronics Systems. Emerging Trends in Mechatronics. Springer, Singapore.
- [27] Neeraj Kumar Mishra, Manoj Kumar Shukla "Evaluation of various controllers in Fractional order Nonlinear Systems with Actuator Fault," Multimedia Tools and Applications, Volume 83, p.p. 1-18, 2024.