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Abstract: In case of an outbreak of COVID -19 Pandemic, Psychological or Inhibitory
effects and vaccination play a major role in controlling the impact of the COVID -19 on
society. We developed a Susceptible — Exposed — Infected-Recovered—Susceptible type
epidemic model with explicitly vaccination control. The transmission of infectious disease
from susceptible to infected is taken Holling-type III Incidence rate. The Holling- type III
Incidence rate is to interpret the psychological or inhibitory effect on the population. In their
steady-state the model has two equilibrium point namely Disease-Free Equilibrium and
Endemic equilibrium. Detailed analysis of the epidemic model is performed using the Basic
reproduction number, centre manifold theory and Routh - Hurwitz criterion. When Basic
Reproduction Number is less than unity then disease will be dies-out. The disease will persist
when the Basic Reproduction number is greater than unity. At Ro=1, transcritical bifurcation
is occur and Geometric approach is used to obtain the global stability condition of the system.

Sensitivity analysis of Ry is analysed and numerical simulation is also done.

Key words: Epidemic Model, Equilibrium, Lyapunov function, centre-manifold theorem,

Reproduction number.

1. INTRODUCTION

From the beginning of the COVID-19 (SARS-COV-2), Infectious disease has a huge effect
on the lifestyle of human beings. The novel corona virus disease (COVID-19) was first
confirmed in the China City of Wuhan, late December 2019. The rapidity of its spread in
many countries around the globe made the WHO declare it as a Global Pandemic with the
invention of different control tools like vaccination, treatments, quarantine, lockdown etc.
through the severity of the corona virus infectious disease reduces but the total control is yet
to be achieved. The corona virus disease (COVID-19) caused by the severe acute respiratory
syndrome corona virus-2 (SARS-COV-2) present clinical features which are similar to the
disease caused by other corona viruses severe acute respiratory syndrome (SARS) and middle
east respiratory syndrome such as lower respiratory illness with fever, dry cough, shortness of

breath etc.
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Many Mathematical models have appeared in an attempt to assess the dynamic mathematics
models aimed at estimating of the basic reproduction number [17,10,8,1]. Many researchers
work on vaccination control and how much they are effective.

In this paper we aim to study the dynamical behaviour of a corona virus diseases which has
some effective vaccine and can recovered either by naturally or by some proper treatments.
Corona virus disease is that whenever the virus enters into the body of a susceptible person
will be exposed for some time and leave in latent period then become infectious some rate.
The total human population can be divided into four time dependent individual classes
susceptible S(t), exposed E(t), infected class I(t) and recovered class R(t). The incidence in an
epidemic model is the rate at which the susceptible become infectious and it play an
important role in transmission of disease. We consider transmission of infectious disease

from susceptible to infected is taken Holling type-III Incidence rate in the form

B B> 0)

1+n12’

Where n is the half saturation constant and B is known as the transmission parameter.

1s measure the inhibition effect of the

BSI Measure the force of infection and >
1401

behavioural change of the susceptible individuals where there is an increase in the no. of
infective. Let A be the recruitment rate at any time ¢ and p be the available vaccination
control which are applied to the newly recruited person. The portion pA, are vaccinated and
become immune from the disease (This immune may be temporary though) and move to the
recovered class. But we assume that the recovery is not permanent and the vaccination may
be temporary immunity. The portion (1-p)A remain susceptible for the disease. Some other

rates are described in Table 1.

Table: 1 Description of parameter

Parameter Description of parameter
A The recruitment rate
n The available vaccination control which are applied to the newly recruited
person
o rate at which exposed become infected
D Natural death rate
B the transmission parameter
n is the half saturation constant
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Y disease related death rate is y
a Rate at which recovered loss immunity and go to the susceptible class
M rate at which infected individuals recover either by naturally or by treatment

In the mathematical model transmission of disease is represented by flow diagram in figure

1.
A “A *| o R _’dR
1(1 — )4 oR 7727
S BSI 1
| T ]
s E dl

dE

Figure: 1 Flow diagram of disease transmission

The Mathematical Model for corona virus infection disease is described by the following

system of differential equations:

§=(l—u)A—ds— BSIZ + aR
dt 1+n/
d—Ez—dE+ BSIZ —

dt 1+n/
ﬂzcE—d]—y]—m[

dt

d—R:Au—dRerl—ocR

dt

2. POSITIVITY AND BOUNDEDNESS OF THE SYSTEM

Positivity:

()

Lemma 2.1: Solution of the model equations (1) together with initial conditions of the

system are:
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5§(0)>0,E(0)=0,1=0,R=>0 .. (2)
Are always positive that is the model is positive for all 7.
Boundedness:
Theorem 2.2: The solution of the system (1) is uniformly bounded.

Proof: Suppose X=S+E+I+R

X —A—-dX
dt

The feasible region of system (1) is
¢={(5+E+1+R):1imsup(s+E+1+R)s§} - (3)
T]—)OO

Thus is naturally follows that the region is Y positively invariant with respect to system (1).

Positivity and Boundedness of solution of a system (1) well behaved.

2.3 Basic Reproduction Number

Basic reproduction number is defined as the average number of secondary infections caused
by a single infectious individual during their entire infectious period and it is denoted by Ro.
Basic reproduction number measure of how quickly an epidemic will take off. We calculated

the basic reproduction number of the system (1) by Next Generation matrix [18§].

The system has a always a disease-free equilibrium E, (S, 0,0, Ry)

A(d(1—p)+ A
Where, S, = (d-pw+a) and R, = i
d(d+a) d+a
To calculate basic reproduction number we write down the system (1) as follows:
dx

= =F(x)-V(x)

Where F(x)=(E,I,R,S)T

BSI

(o +d)E

= 1+(;IIZ] V) = [—GE +(d+m+y)l

Jacobian matrix of F'(x) & V' (x)at Eare respectively

BAd(1-pw+a) |
S, = d(d+a)
_0 O .
V), = [(d + o) 0
* | -o (d+m+y) ]|
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The basic reproduction number of the system (i) is defined by the spectral radius of the

matrix

R =p(Fyy=—oPAdd-wW+a )
0 d(d +a)(o+d)(d+m+7)

3. EQUILIBRIUM OF THE MODEL AND THEIR STABILITY
The system (1) has two possible non-negative equilibrium. The first one is the disease free

equilibrium Ey(Sy, 0,0, Ry) and other one is Endemic equilibrium

E.(S* E*,I* R*)

Where, S *= w (1 +nl*?)

I (y—i—m+a’)l>X<

(0}
Ju_ IB(d +0)(d +0)(d +y+m) —Boam] + A
2nd(d +o)(d +a)(d +y+m)
Where, A=[B(d +a)(d +o)d+7y+m)—P—am]
—4d*n(d + a)*(d + o)’ (d +m+7)* (1= R,)
_ Au+ml *
(d+a)

Clearly, I" will have positive roots if only if
A> 0 and Ry > 1. Then Endemic equilibrium E- is exists if £ >1.
Theorem 3.1: If R,is less than unity then disease free equilibrium is locally asymptotically
stable and unstable if R, >1.
Proof: The characteristics equation to the system (1) at £y is given by
(d+2)(d+o+W)[A +(d+o)d+y+m)+1M2d +y+m+0)
_opA(dd-w+a), 0
d(d + o)
@d+Dd+a+D[A2+Q2d+y+m+o)dl+(d+0)d+y+m)(1—Ry)]=0.
.. (5)

From above characteristics equation two roots are negative real part

A= —d,and A = —(d + a) And two other roots are depends on
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A2+ P2+ Q =0, where P=(2d + y + m + o) and
Q=(d +0)(d +y +m)(1 = Ro)
If RO <1, then both roots are negative real part and system (1) is locally asymptotically stable.
If RO>1 then one has positive real part and other one is negative real part and system (1) goes
unstable.
Theorem 3.2: If Ro is less than unity then disease free equilibrium is Globally
Asymptotically Stable.
Proof: Construct a Lyapunov function

L=cE+(c+d)l

L'=0E"+(c+ad)I

:( BSI2 —(cs+d)EJc+(c+d)(GE—(d+Y+m)])
1+n/

:1*(1+jo2 —lj(d+y+m)(d+c)

If R, <lthen L'<O0 for all point in y other than Eo.
Therefore, from LaSalle’s invariance principle disease-free-equilibrium is Globally

Asymptotically Stable.
3.3 Analysis at R, =1.

In this section is to analyse the behaviour of the system (1) when Ro =1. The Jacobian matrix

of the system (1) evaluated at Ro =1 and parameter

_ px _ d(d+o)(d+a)(d+y+m)
p=p"= cA(a+(1-p)d)

has one of the Eigen value as zero and the remaining Eigen values are negative stability at
point Ro = 1 applying centre manifold theory (Sastry 1999).
We consider system (1)

S=x,E=x,,I =x; And R = x, the n, the system (1) can be rewritten as follows.

dx, Bxx
—L=(f-wA—-dx,——=-+ox
i f—w I nx32 4
@ —dx, Bx1x32 —oX,

dt 1+mnx;

dx

d—; = —dx, + ox, — yX; — mx,
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C;ﬂzAu—dx4 + mx, — ox, (7
t

Let J* be the Jacobian matrix evaluated at Ro = 1 and B = B*. On addition let
M:[Ml,uz,u3,u4] and W=[WI,W2,W3,W4]Tbe the left Eigen vector and right Eigen

vector of J* corresponding to zero Eigen value

L, _BA@a-w+o
d(d+a)
0 —(d +(X) BA(d(l_M)-l_a)
d(d +a)
0 6 —(d +vy+m) 0
0 0 m ~(d+2)

Then, we have following:
“1 :()’LL2 :1’H3 = 09H4 :O

(c+d)*(d +7v+m)+omo

: { d(d+y+m)d+a) }

_ (e) W= mo
d+y+m  * (d+y+m)d+0)

w, =1Lw,

The non-zero, partial derivatives associated with the function of the system (J) and from
Castillo Chavez and song (2004), the bifurcation constant a; and b; are as follows.
p o? fk
a, = z HW,W; {MJ

K,i,j=1
0

_ —26B" | (d+0)°(d+7y+m)
d+y+m| d(d+y+m)d+a)

1 62
b, = ZHkWi[@x@%*j
K.,i=1 i E,

_Ad-w+a)
d(d +a)

+Gmoc}<0
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Then the disease free equilibrium changes its stability from stable to unstable at R, =land

there exists a positive equilibrium as Ro cross one. Hence the system (7) exhibits transcritical

bifurcation with bifurcation parameter 3 *at R, =1

Theorem 3.3: If Ry is greater than unity, then the Endemic equilibrium E.(S*, E*, [*, R*)

is locally asymptotically stable.

Proof: Jacobian of system (J) at the K endemic state E and E, is

B _BSa-nr’)
1+n/° (1+nl%)°
- Pl (eray BSUTND)
1+n/ (1+nl%)°
0 c —(y+m+d) 0
0 0 m —(d+a)
From which we obtain the characteristics equation
M+ A +BV+Ch+D=0 .. (8)
%
AI:(4d+a+c+m+y+ P!
1+n/?
B= (G+d)(y+m+d)+(d+lﬁ j(d+a)+
* * _ 2
2d + o+ Bl - (2a’+cs+m+y)—6BS(1 an)
l+n/ (1+nl)
% *
C:(d+ Bl 2j(d+oc)(2d+c5+m+y)+(2a’+oc+ B! 2}
1 1+n/
sk _ 2
(c+d)(y+m+d)+o Bl > psd 11212)
1+n/ (1+nl°)
%
_ Bsa-mi(, Bl
(1+nl?)’ 1+nl*
pI"
D=|d+ (d+a)d+o)y+m+d)
d+nl"
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e )
(1+nl)” \d+nl 1+n/

M(d+a)—moc0

(1+nl?)?

BI
1+n/°

Thus, by direct computation, we have that ABC > C 2+ AD. Therefore, by Routh-Hurwitz

criterion, if follows that the endemic equilibrium E*, of (1) is locally asymptotically stable.

GLOBAL STABILITY OF ENDEMIC EQUILIBRIUM

Definition 3.1: The system (1) is said to be uniformly persistent in , if there exists a
constant ¢ > 0 such that any solution (S(t), E(t), I(t), R(t))of system (1) with initial

Value (50, E(0),1(0),R(0)) € int(S(0), £(0),1(0),Q(0),R(0)) € int s satisfies.

min {tliminfS(t), tlim infE (t), tlim infl(t), gim infR (t)} > c.
Similar to [7], we can get

Theorem 3.4: System (1) is uniformly persistent in s if and only if R > 1.

Remarks 3.1. The uniform persistence of system (1) in the bounded set (2 is equivalent to the
existence of a compact K c  that is absorbing for (1) (see [10]). Next we investigate the
global stability of the endemic equilibrium of model (1). A geometrical approach developed
in [13] (see also [12, 14, 6]) for proving global stability will be used in our discussion. Such
method is based on the use of a high-order generalization of the Bendixons criterion which
precludes the existence of non-constant periodic solutions (see [19]).

Now we briefly outline a general mathematical framework developed in [15] for proving

global stability. Consider the autonomous dynamical system.

dx
Z—f(X)

Where x — f(x)eR"is a C'function about x in ;; € R™. Assume that the following

hypothesis is holds:
(H1): There is a compact absorb set K C {;;

(H2): Differential equation (*) has a unique equilibrium x, in ;.
Let x — P(x)(%)x (%) matrix-valued function that is C'forx € {r;. Assume that P~'(x)

exists and is continuous for x € K. A quantity ¢ is defined as
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g = limsup sup%J‘ol H(B(x(s,x,)))ds

xeK

Where

of2
B= PfPfl +P j;Ec ] p~', The matrix P, is obtained by replacing each entry F, of P by its

derivative in the direction of /. The quantity p(B)is the Lazinski measure of B with respect

: I+hB|-1
to a vector norm |-|in RY, N = (}), defined by p(B) =1lim +¥.

t—0

The following global stable result is proved in Theorem 3.5 or [13].

Lemma 3.4: Suppose that s, is simply connected and that assumption (H1)-(H2) hold, then
the unique equilibrium x= is globally stable y1; in if ¢ <O0.

Now we apply the theory developed in [15], in particular Lemma 3.4, to prove the global
stability of E*.

Theorem 3.5: If Ro greater than unity, then Endemic equilibrium E* is globally
asymptotically stable.
Proof: We consider Sub-system of (1)

ﬁz(l—u)A—dS— BS12 + aR

dt 1+n/

d_E: BSIZ—(d+G)E

dt  1+nl

%:Gt—(y+m+d)l .. (9)

The Jacobian of system (9) is

—(d+ B j 0 _M

1+n/? (1+nI?)’
pL BS(—nl?)
J(E,) = e - —_ ... (10
(£.) 1+T]]2 (o+a) (1+n]2)2 (10
0 c —(y+m+d)

And its second additive matrix is
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__ B BSU-nI®) BS(A-nl’)
1+n/° (1+nI%) (1+nl%)°
J = c B 0
l+n/
0 P! - -K
L 1+n/ |

Where, m=2d+o
n=2d+m+y

K=2d+m+y+o

Choose the function P(x)= P(S,E,I)= diag(1,§’€j

E' I'E'" I
PP =diag| 0,—-—,—-—
- E I'E I
Bl . BSIA-n’) BSI(1-nI?) ]
1+nl* EQ+nI*)Y  E(1+nl*)
P/ P = GE __BI =—n 0
1 1+n/
0 P! 1-K
i 1+al ]

B= PFP_l + PJ™ P ' Can be written in matrix from

B:|:B11 B12:|
B21 BZZ

Let (1, v, w)be vector in R* its norm || — | | is defined as
[, v, w = max{| .| v|+|wl}

Let p(B) be the Lozinski measure with respect to this norm then as described

n(B)<sup{g.g,}

S 1o E'
We received this ;J.o w(B)ds < ;.[o (E — dj ds

This implies g < —% <0

We know that equilibrium E, is globally asymptotically stable.
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d—R:Au—dR+mI—OLR .. (11)
dt
and its limit system is based on (11)
A 1
We get R(l‘) = M
d+a

Then we get that E* is globally asymptotical stable. We proof the global stability of endemic
equilibrium of model (1) with geometric approach [16]. Then it conclude our system is stable.
4. Sensitivity Analysis and Numerical simulation

Sensitivity indices allow us to measure the relative change in a state variable when a
parameter changes. The normalized forward sensitivity index of a variable to a parameter is
the ratio of the relative change in the variable to the relative change in the parameter. When
the variable is a differentiable function of the parameter, the sensitivity index may be
alternatively defined using partial derivatives.
4.1 Definition: The normalized forward sensitivity index of a variable, h, that depends
differentially on a parameter, 1, is denoted by I'* defined as:
Sensitivity indices of Ro
We drive the sensitivity of Ro to each of the different parameter y, a,y,m, 8, 0.

The sensitivity index of Ro with respect to u is presented by

R OR —-d
r 0 — LX_O — e
u Ry ou  a+(-wd

Sensitivity indices of Ro to other parameters of the model are shown below:

Ro _ @ ORo _ ____adu
I," = Ry~ da  (d+a)(a+(1-w)d) And
FROZL I‘ROZ_—]/ FROZ_—d‘u FROZ d
™o m4y+d Y m+y+dH a+(Q—-wd "° d+o
Ro _
I‘ﬁ =

The parameter is arranged from most sensitive to least sensitive. From the sensitivity indices
most sensitive parameters are [ and ¢ which is the maximum contact rate between
susceptible and infected class and transfer rate from exposed to infected class respectively.
The least sensitive parameter is disease related death rate y. The parameter that change Ro
can be consider as control parameters. Table 2 describe the sensitivity indices of parameter to
Ro.
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Paramet | Description Sensitivity indices | Increasing/decreasing
er in Ro
B Contact rate between 1 Increment(decrement) in
susceptible and infected contact  rate gives
increment (decrement) in
Ro
o Transfer rate from exposed to 0.11 Increment(decrement) in
infected class transfer  rate  gives
increment(decrement) in
Ro
o Rate at which recovered loss | 0.088 Increment (decrement) in
immuni.ty and go to the recovered loss immunity
susceptible class _ '
rate  gives Increment
(decrement) in Ro
i The  available vaccination | -0.11 Increment(decrement) in
control which are applied to the vaccination control gives
newly recruited person decrement(increment) in
Ro
M Rate which infected population | -0.941 Increment(decrement) in
recover naturally recovery rate  gives
decrement(increment) in
Ro
Y Disease related death rate -0.011 Increment (decrement) in
disease related death
decrement  (increment)
Ro

Now the analytical result is verified with the help of numerical simulation. We Consider a
parameter set as Qi={y,A,dn,vy,a,a,m} ={0.5,100,0.1,0.9,0.025,0.4,0.8,2}. Some of the

parameter is taken from the previous published paper and some are assumed. For f = 0.001

we have only one disease free equilibrium Eo (900, 10, 10, 20) and it is locally asymptotically

stable in figure 2. Again taking same parameter set Q;, with § = 0.01 we have two feasible

region one is disease free and another is endemic equilibrium is locally stable in figure 3.
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Figure 2: Disease free equilibrium with respect to parameter Q1.
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Figure 3: solution curves at endemic with respect to parameter Qi.

5. CONCLUSION
In this paper we present a SERIS Epidemic model with Holling-type Il incidence rate for

COVID-19. In this model combine effect of vaccination and treatment is analysis. Dynamical
behaviour of our model like positivity, bounded, different equilibriums and sharp threshold
parameter reproduction number is investigated. Reproduction number is very much
essential to sort out the characterization of the disease. Global stability at Disease-free
equilibrium and Endemic equilibrium is investigated the disease will be die-out when RO <1,
it became endemic equilibrium is globally asymptotically stable in RO >1 and disease persist.
Also analysis for RO = 1 system has a positive equilibrium exists a when RO cross one. This
emphasizes that the system exhibits transcritical bifurcation at RO =1.

The sensitivity analysis shows that the most sensitive parameter are contact rate between
susceptible and infected (B), transfer rate from exposed to infected (o) and rate at which
recovered loss immunity and go to the susceptible (a). The sensitivity analysis gives a

concrete measurement of relative changes in reproduction number to all parameter.
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