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Abstract:  In case of an outbreak of COVID -19 Pandemic, Psychological or Inhibitory 

effects and vaccination play a major role in controlling the impact of the COVID -19 on 

society. We developed a Susceptible – Exposed – Infected-Recovered–Susceptible type 

epidemic model with explicitly vaccination control. The transmission of infectious disease 

from susceptible to infected is taken Holling-type III Incidence rate. The Holling- type III 

Incidence rate is to interpret the psychological or inhibitory effect on the population. In their 

steady-state the model has two equilibrium point namely Disease-Free Equilibrium and 

Endemic equilibrium. Detailed analysis of the epidemic model is performed using the Basic 

reproduction number, centre manifold theory and Routh - Hurwitz criterion. When Basic 

Reproduction Number is less than unity then disease will be dies-out. The disease will persist 

when the Basic Reproduction number is greater than unity. At R0=1, transcritical bifurcation 

is occur and Geometric approach is used to obtain the global stability condition of the system. 

Sensitivity analysis of R0 is analysed and numerical simulation is also done. 

 

Key words: Epidemic Model, Equilibrium, Lyapunov function, centre-manifold theorem, 

Reproduction number.  

 

1. INTRODUCTION 

From the beginning of the COVID-19 (SARS-COV-2), Infectious disease has a huge effect 

on the lifestyle of human beings. The novel corona virus disease (COVID-19) was first 

confirmed in the China City of Wuhan, late December 2019. The rapidity of its spread in 

many countries around the globe made the WHO declare it as a Global Pandemic with the 

invention of different control tools like vaccination, treatments, quarantine, lockdown etc. 

through the severity of the corona virus infectious disease reduces but the total control is yet 

to be achieved. The corona virus disease (COVID-19) caused by the severe acute respiratory 

syndrome corona virus-2 (SARS-COV-2) present clinical features which are similar to the 

disease caused by other corona viruses severe acute respiratory syndrome (SARS) and middle 

east respiratory syndrome such as lower respiratory illness with fever, dry cough, shortness of 

breath etc.  
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Many Mathematical models have appeared in an attempt to assess the dynamic mathematics 

models aimed at estimating of the basic reproduction number [17,10,8,1]. Many researchers 

work on vaccination control and how much they are effective. 

In this paper we aim to study the dynamical behaviour of a corona virus diseases which has 

some effective vaccine and can recovered either by naturally or by some proper treatments. 

Corona virus disease is that whenever the virus enters into the body of a susceptible person 

will be exposed for some time and leave in latent period then become infectious some rate. 

The total human population can be divided into four time dependent individual classes 

susceptible S(t), exposed E(t), infected class I(t) and recovered class R(t). The incidence in an 

epidemic model is the rate at which the susceptible become infectious and it play an 

important role in transmission of disease. We consider transmission of infectious disease 

from susceptible to infected is taken Holling type-III Incidence rate in the form  

  
ఉௌூ

ଵାఎூమ , (𝛽, 𝜂 > 0)  

 Where  is the half saturation constant and  is known as the transmission parameter. 

SI Measure the force of infection and 
ଵ

ଵାఎூమis measure the inhibition effect of the 

behavioural change of the susceptible individuals where there is an increase in the no. of 

infective. Let A be the recruitment rate at any time t and  be the available vaccination 

control which are applied to the newly recruited person. The portion A, are vaccinated and 

become immune from the disease (This immune may be temporary though) and move to the 

recovered class. But we assume that the recovery is not permanent and the vaccination may 

be temporary immunity. The portion (1–)A remain susceptible for the disease. Some other 

rates are described in Table 1. 

                                           

                                 Table: 1 Description of parameter 

Parameter Description of parameter 

A The recruitment rate 

 The available vaccination control which are applied to the newly recruited 

person 

  rate at which exposed become infected 

D Natural death rate 

𝜷 the transmission parameter 

𝜼 is the half saturation constant 
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 disease related death rate is  

 Rate at which recovered loss immunity and go to the susceptible class 

M rate at which infected individuals recover either by naturally or by treatment 

 

 In the mathematical model transmission of disease is represented by flow diagram in figure 

1. 

 

                              Figure: 1 Flow diagram of disease transmission 

The Mathematical Model for corona virus infection disease is described by the following 

system of differential equations:  

  
2

(1 )
1

ds SI
A ds R

dt I


      

 
 

  
21

dE SI
dE E

dt I


    

 
 

  
dI

E dI I mI
dt

       

  
dR

A dR mI R
dt

               ... (1) 

2. POSITIVITY AND BOUNDEDNESS OF THE SYSTEM 

Positivity: 

Lemma 2.1: Solution of the model equations (1) together with initial conditions of the 

system are:  
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  𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0   ... (2) 

Are always positive that is the model is positive for all t.  

Boundedness: 

Theorem 2.2: The solution of the system (1) is uniformly bounded.  

Proof: Suppose  X = S + E + I + R 

          
ௗ௑

ௗ௧
= 𝐴 − 𝑑𝑋 

The feasible region of system (1) is  

 𝜓 = ൜(𝑆 + 𝐸 + 𝐼 + 𝑅): lim
ఎ→ஶ

sup(𝑆 + 𝐸 + 𝐼 + 𝑅) ≤
஺

ௗ
ൠ             ... (3) 

Thus is naturally follows that the region is 𝜓 positively invariant with respect to system (1).  

Positivity and Boundedness of solution of a system (1) well behaved. 

 

2.3 Basic Reproduction Number 

Basic reproduction number is defined as the average number of secondary infections caused 

by a single infectious individual during their entire infectious period and it is denoted by R0. 

Basic reproduction number measure of how quickly an epidemic will take off. We calculated 

the basic reproduction number of the system (1) by Next Generation matrix [18]. 

The system has a always a disease-free equilibrium 𝐸଴(𝑆଴, 0,0, 𝑅଴) 

Where,  0

( (1 ) )

( )

A d
S

d d

  


 
 and 0

A
R

d




 
 

To calculate basic reproduction number we write down the system (1) as follows:  

  ( ) ( )
dx

F x V x
dt

   

Where  ( ) ( , , , )F x E I R S T  

  𝐹(𝑥) = ቈ
஻ௌூ

ଵାఎூమ

0
቉ , 𝑉(𝑥) = ൤

(𝜎 + 𝑑)𝐸
−𝜎𝐸 + (𝑑 + 𝑚 + 𝛾)𝐼

൨ 

Jacobian matrix of ( ) & ( )F x V x at 0E are respectively 

  
0

( (1 ) )
0

( )( )

0 0
E

A d

d df x

    
    
  

 

  
0

( ) 0
( )

( )E

d
V x

d m

  
      
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The basic reproduction number of the system (i) is defined by the spectral radius of the 

matrix  

  1
0

( (1 )
( . )

( )( )( )

A d
R F V

d d d d m
     

  
      

        ..... (4) 

 

3. EQUILIBRIUM OF THE MODEL AND THEIR STABILITY 

The system (1) has two possible non-negative equilibrium. The first one is the disease free 

equilibrium 𝐸଴(𝑆଴, 0,0, 𝑅଴) and other one is Endemic equilibrium  

  *( *, *, *, *)E S E I R  

Where, 𝑆 ∗=
(ఙାௗ)(ఊା௠ାௗ)

ఙఉ
(1 + 𝜂𝐼∗ଶ) 

  
( )

* *
m d

E I
  




 

  
[ ( )( )( ) ]

*
2 ( )( )( )

d d d m m
I

d d d d m

           


       
 

Where,  2[ ( )( )( ) ]d d d m m               

     2 2 2 2
04 ( ) ( ) ( ) (1 )d d d d m R           

  
*

*
( )

A mI
R

d

 


   

Clearly, I* will have positive roots if only if  

∆> 0 𝑎𝑛𝑑 𝑅଴ > 1. Then Endemic equilibrium E* is exists if 0 1.R   

Theorem 3.1: If 𝑅଴is less than unity then disease free equilibrium is locally asymptotically 

stable and unstable if 0 1.R   

Proof: The characteristics equation to the system (1) at E0 is given by 

 2( )( )[ ( )( ) (2 )d d d d m d m                     

( (1 ) )
] 0

( )

A d

d d

    
 

 
 

(𝑑 + 𝜆)(𝑑 + 𝛼 + 𝜆)[𝜆ଶ + (2𝑑 + 𝛾 + 𝑚 + 𝜎)𝜆 + (𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑚)(1 − 𝑅଴)] = 0.                                                   

... (5) 

From above characteristics equation two roots are negative real part  

𝜆 = −𝑑, 𝑎𝑛𝑑 𝜆 = −(𝑑 + 𝛼)  And two other roots are depends on 
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𝜆ଶ + 𝑃𝜆 + 𝑄 = 0, where P=(2𝑑 + 𝛾 + 𝑚 + 𝜎) and  

Q=(𝑑 + 𝜎)(𝑑 + 𝛾 + 𝑚)(1 − 𝑅଴) 

If R0 <1, then both roots are negative real part and system (1) is locally asymptotically stable. 

If R0>1 then one has positive real part and other one is negative real part and system (1) goes 

unstable. 

Theorem 3.2: If R0 is less than unity then disease free equilibrium is Globally 

Asymptotically Stable.  

Proof: Construct a Lyapunov function  

   ( )L E d I      

   𝐿ᇱ = 𝜎𝐸ᇱ + (𝜎 + 𝑑)𝐼′ 

       =  2
( ) ( ) ( )

1

SI
d E d E d m I

I

 
              

 

      0
2

* 1 ( )( )
1

R
I d m d

I

 
           

If 0 1R  then ' 0L   for all point in ψ other than E0.  

Therefore, from LaSalle’s invariance principle disease-free-equilibrium is Globally 

Asymptotically Stable.  

3.3 Analysis at 0 1.R   

In this section is to analyse the behaviour of the system (1) when R0 =1. The Jacobian matrix 

of the system (1) evaluated at R0 =1 and parameter  

  𝛽 = 𝛽∗ =
ௗ(ௗାఙ)(ௗାఈ)(ௗାఊା௠)

ఙ஺(ఈା(ଵିఓ)ௗ)
 

has one of the Eigen value as zero and the remaining Eigen values are negative stability at 

point R0 = 1 applying centre manifold theory (Sastry 1999). 

We consider system (1)  

1 2 3, ,S x E x I x    And 4R x the n, the system (1) can be rewritten as follows.  

  1 1 3
1 42

3

( )
1

dx Bx x
f A dx x

dt x
     

 
 

  2 1 3
2 22

31

dx Bx x
dx x

dt x
   

 
 

  3
3 2 3 3

dx
dx x x mx

dt
        
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  4 3 4

dxy
A dx mx x

dt
              ... (7) 

Let J* be the Jacobian matrix evaluated at R0 = 1 and  = *. On addition let 

 1 2 3 4, , ,       and 1 2 3 4[ , , , ]Tw w w w w be the left Eigen vector and right Eigen 

vector of J* corresponding to zero Eigen value  

  

( (1 )
0

( )

( (1 ) )
0 ( ) 0

( )

0 6 ( ) 0

0 0 ( 2)

A d
d

d d

A d
d

d d

d m

m d

          
          
    

   

 

Then, we have following:  

  1 2 3 40, 1, 0, 0         

  
2

1

( ) ( )

( )( )

d d m m
w

d d m d

        
       

 

  2 3 41, ,
( )( )

m
w w w

d m d m d

 
  

       
 

The non-zero, partial derivatives associated with the function of the system (J) and from 

Castillo Chavez and song (2004), the bifurcation constant a1 and b1 are as follows.  

  

0

2

1
, , 1

k
k i j

K i j i j E

f
a w w

x x





 
      
  

       =
22 ( ) ( )

0
( )( )

b d d m
m

d m d d m d

       
            

 

  

0

2

1
, 1 *

k
k i

K i i E

f
b w

x





 
     
  

     
( (1 ) )

0
( )

A d

d d

   
 

 
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Then the disease free equilibrium changes its stability from stable to unstable at 0 1R  and 

there exists a positive equilibrium as R0 cross one. Hence the system () exhibits transcritical 

bifurcation with bifurcation parameter * at 0 1R   

Theorem 3.3: If R0 is greater than unity, then the Endemic equilibrium *( *, *, *, *)E S E I R

is locally asymptotically stable.  

Proof: Jacobian of system (J) at the K endemic state E and *E  is  

  

2

2 2 2

2

2 2 2

(1 )
0

1 (1 )

(1 )
J(E*) = ( ) 0

1 (1 )

0 ( ) 0

0 0 ( )

I S I
d

I I

I S I
d

I I

m d

m d

    
        
    

   
    

     
 

   

 

From which we obtain the characteristics equation  

  4 3 2 0A B C D                 ... (8) 

  1 2

*
4

1

I
A d m

I

 
           

 

  
2

( ) ) ( )
1

I
B d m d d d

I

 
             

 

                 
* * 2

2 2 2

(1 )
2 2

1 (1 )

I S I
d d m

I I

   
             

 

  
2 2

* *
( )(2 ) 2

1 1

BI I
C d d d m d

I I

   
                     

 

  
2

2 2 2

* (1 )
( )( )

1 (1 )

I S I
d m d

I I

    
             

 

   

2

2 2

(1 ) *
2

(1 ) 1 *

S I I
d

I I

    
        

 

  ( )( )( )
I

D d d d m d
d I





 
           
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2

2 2 2 2

(1 ) * '
( )

(1 ) 1

S I d I BI
d x

I d I I

       
               

 

    
2

2 2 2

(1 )
( )

(1 ) 1

S I I
d m

I I

  
   

   
 

Thus, by direct computation, we have that 2 2 .ABC C A D   Therefore, by Routh-Hurwitz 

criterion, if follows that the endemic equilibrium E*, of (1) is locally asymptotically stable.  

 

GLOBAL STABILITY OF ENDEMIC EQUILIBRIUM  

Definition 3.1: The system (1) is said to be uniformly persistent in ψ, if there exists a 

constant c > 0 such that any solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡))of system (1) with initial   

Value  ൫ 𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)൯ ∈ int൫𝑆(0), 𝐸(0), 𝐼(0), 𝑄(0), 𝑅(0)൯ ∈ int ψ satisfies. 

min ቄlim
௧→ஶ

inf𝑆(𝑡), lim
௧→ஶ

inf𝐸(𝑡), lim
௧→ஶ

inf𝐼(𝑡), lim
௧→ஶ

inf𝑅(𝑡)ቅ ≥ 𝑐. 

Similar to [7], we can get  

Theorem 3.4: System (1) is uniformly persistent in ψ if and only if 0 1.R   

Remarks 3.1. The uniform persistence of system (1) in the bounded set  is equivalent to the 

existence of a compact 𝐾 ⊂ ψ that is absorbing for (1) (see [10]). Next we investigate the 

global stability of the endemic equilibrium of model (1). A geometrical approach developed 

in [13] (see also [12, 14, 6]) for proving global stability will be used in our discussion. Such 

method is based on the use of a high-order generalization of the Bendixons criterion which 

precludes the existence of non-constant periodic solutions (see [19]). 

Now we briefly outline a general mathematical framework developed in [15] for proving 

global stability. Consider the autonomous dynamical system.  

  ( )
dx

f x
dt

  

Where ( ) nx f x R  is a 1C function about x in ψଵ ⊂ 𝑅௡. Assume that the following 

hypothesis is holds:  

(H1): There is a compact absorb set 𝐾 ⊂ ψଵ; 

(H2): Differential equation (*) has a unique equilibrium *x in ψଵ. 

Let 2 2( )( ) ( )n nx P x  matrix-valued function that is 1C for𝑥 ∈ ψଵ. Assume that 1( )P x

exists and is continuous for .x K  A quantity q is defined as  
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1

00

1
limsupsup ( ( ( , )))
t x K

q B x s x ds
t 

   

Where  

1 1[2]
,f

f
B P P P p

ax
 

  The matrix fP is obtained by replacing each entry ijP of P by its 

derivative in the direction of f. The quantity ( )B is the Lazinski measure of B with respect 

to a vector norm | | in 2, ( ),N nR N  defined by 0

| | 1
( ) limt

I hB
B

h

 
   .  

The following global stable result is proved in Theorem 3.5 or [13].  

Lemma 3.4: Suppose that ψଵ is simply connected and that assumption (H1)–(H2) hold, then 

the unique equilibrium x* is globally stable ψଵ in if q < 0.  

Now we apply the theory developed in [15], in particular Lemma 3.4, to prove the global 

stability of E*. 

 

Theorem 3.5: If R0 greater than unity, then Endemic equilibrium E* is globally 

asymptotically stable.  

Proof: We consider Sub-system of (1) 

  
2

(1 )
1

dS SI
A dS R

dt I


      

 
 

  
2

( )
1

dE BSI
d E

dt I
   

 
 

  ( )
dI

t m d I
dt

            ... (9) 

The Jacobian of system (9) is 

  

2

2 2 2

2

* 2 2 2

(1 )
0

1 (1 )

(1 )
( ) ( )

1 (1 )

0 ( )

I S I
d

I I

I S I
J E

I I

m d

     
         
    

     
    

     
 
  

      … (10) 

And its second additive matrix is 
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2 2

2 2 2 2 2

[2]
2

2

(1 ) (1 )

1 (1 ) (1 )

0
1

0
1

I S I S I
m

I I I

I
J

I

I
K

I

       
        
 

      
 

   

 

Where,  m = 2d +  

  n = 2d + m +   

  K = 2d + m +  +  

Choose the function ( ) ( , , ) 1, ,
E E

P x P S E I diag
I I

    
 

 

 
1 1 1 1

1 0, ,f

E I E I
P P diag

E I E I
  
   

 
 

 

2 2

2 2 2 2 2

[2] 1
2

(1 ) (1 )

1 (1 ) (1 )

, 0
1

0 1
1

I BSI I SI I
m

I E I E I

E I
PJ P

I I

I
K

I



      
        
 

      
 

   

 

 1 [2] 1
FB P P PJ P   Can be written in matrix from  

 
11 12

21 22

B B
B

B B

 
  
 

 

Let ( , , )v w be vector in R* its norm | | – | | is defined as 

  || , , || max | |,| | | |v w v w     

Let ( )B be the Lozinski measure with respect to this norm then as described  

   1 2( ) sup ,B g g   

We received this 
1

0 0

1 1
( )

t t E
B ds d ds

t t E

 
   

 
   

This implies  0
2

q


    

We know that equilibrium *E is globally asymptotically stable.  
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dR

A dR mI R
dt

               ... (11) 

 and its limit system is based on (11)  

We get   ( )
A mI

R t
d

 


 
 

Then we get that E* is globally asymptotical stable. We proof the global stability of endemic 

equilibrium of model (1) with geometric approach [16]. Then it conclude our system is stable.  

4. Sensitivity Analysis and Numerical simulation 

      Sensitivity indices allow us to measure the relative change in a state variable when a 

parameter changes. The normalized forward sensitivity index of a variable to a parameter is 

the ratio of the relative change in the variable to the relative change in the parameter. When 

the variable is a differentiable function of the parameter, the sensitivity index may be 

alternatively defined using partial derivatives. 

4.1 Definition: The normalized forward sensitivity index of a variable, h, that depends 

differentially on a parameter, l, is denoted by 𝚪௟
௛ defined as:  

𝚪௟
௛ =

௟

௛
×

డ௛

డ௟
 

Sensitivity indices of R0 

We drive the sensitivity of R0 to each of the different parameter 𝜇, 𝛼, 𝛾, 𝑚, 𝛽, 𝜎. 

The sensitivity index of R0 with respect to 𝜇 is presented by 

 

𝚪ఓ
ோబ =

ఓ

ோబ
×

డோబ

డఓ
 = 

ିௗఓ

ఈା(ଵିఓ)ௗ
 

 Sensitivity indices of R0 to other parameters of the model are shown below: 

𝚪ఈ
ோబ =

ఈ

ோబ 
×

డோబ 

డఈ
=

ఈௗఓ

(ௗାఈ)(௔ା(ଵିఓ)ௗ)
  And  

𝚪௠ 
ோబ =

−𝑚

𝑚 + 𝛾 + 𝑑
,   𝚪ఊ 

ோబ =
−𝛾

𝑚 + 𝛾 + 𝑑
, 𝚪ఓ 

ோబ =  
−𝑑𝜇

𝑎 + (1 − 𝜇)𝑑
  , 𝚪ఙ 

ோబ =  
𝑑

𝑑 + 𝜎
 

 𝚪ఉ
ோబ  = 1 

The parameter is arranged from most sensitive to least sensitive. From the sensitivity indices 

most sensitive parameters are  𝛽 𝑎𝑛𝑑 𝜎  which is the maximum contact rate between 

susceptible and infected class and transfer rate from exposed to infected class respectively. 

The least sensitive parameter is disease related death rate 𝛾. The parameter that change R0 

can be consider as control parameters. Table 2 describe the sensitivity indices of parameter to 

R0.                 
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                                Table: 2 Description of sensitivity indices 

Paramet

er 

Description Sensitivity indices Increasing/decreasing 

in R0 

𝛽 Contact rate between 

susceptible and infected 

    1 Increment(decrement) in 

contact rate gives 

increment (decrement) in  

R0 

𝜎 Transfer rate from exposed to 

infected class 

    0.11 Increment(decrement) in 

transfer rate gives 

increment(decrement) in 

R0 

 Rate at which recovered loss 
immunity and go to the 
susceptible class 

0.088 Increment (decrement) in 

recovered loss immunity 

rate gives increment 

(decrement) in R0 

 The available vaccination 

control which are applied to the 

newly recruited person 

-0.11 Increment(decrement)  in 

vaccination control gives 

decrement(increment) in 

R0  

M Rate which infected population 

recover naturally 

-0.941 Increment(decrement) in 

recovery rate gives 

decrement(increment) in 

R0 

𝛾 Disease related death rate -0.011 Increment (decrement) in 

disease related death 

decrement (increment) 

R0  

 

Now the analytical result is verified with the help of numerical simulation. We Consider a 

parameter set as Q1={𝜇,A,d,𝜂, 𝛾, 𝛼, 𝜎, 𝑚} ={0.5,100,0.1,0.9,0.025,0.4,0.8,2}. Some of the 

parameter is taken from the previous published paper and some are assumed. For 𝛽 = 0.001 

we have only one disease free equilibrium E0 (900, 10, 10, 20) and it is locally asymptotically 

stable in figure 2. Again taking same parameter set  Q1, with 𝛽 = 0.01 we have two feasible 

region one is disease free and another is endemic equilibrium is locally stable in figure 3. 
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           Figure 2: Disease free equilibrium with respect to parameter Q1. 
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Figure 3: solution curves at endemic with respect to parameter Q1.  

 

5. CONCLUSION  
          In this paper we present a SERIS Epidemic model with Holling-type III incidence rate for 

COVID-19. In this model combine effect of vaccination and treatment is analysis. Dynamical 

behaviour of our model like positivity, bounded, different equilibriums and sharp threshold 

parameter reproduction number is investigated. Reproduction number is very much 

essential to sort out the characterization of the disease. Global stability at Disease-free 

equilibrium and Endemic equilibrium is investigated the disease will be die-out when 𝑅0 <1, 

it became endemic equilibrium is globally asymptotically stable in 𝑅0 >1 and disease persist. 

Also analysis for R0 = 1 system has a positive equilibrium exists a when R0 cross one. This 

emphasizes that the system exhibits transcritical bifurcation at R0 =1.   

    The sensitivity analysis shows that the most sensitive parameter are contact rate between 

susceptible and infected (β), transfer rate from exposed to infected (σ) and rate at which 

recovered loss immunity and go to the susceptible (α). The sensitivity analysis gives a 

concrete measurement of relative changes in reproduction number to all parameter. 
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