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ABSTRACT 

The present research focuses on the application of time series data analysis and its 

significance in understanding and predicting agricultural trends. Time series analysis is a crucial 

tool for agricultural students and researchers, as it provides insights into past patterns, helps 

forecast future values, and assists in making informed decisions for crop management and 

productivity enhancement. Through time series methods, historical data can be examined to 

identify underlying trends, seasonal variations, and fluctuations, which are vital for accurate 

forecasting. this study emphasizes the fundamental concepts of time series analysis, including the 

identification of its components (trend, seasonality, cyclical variations, and irregular 

fluctuations) and the decomposition process used to better understand these elements. 

Additionally, both linear non-stationary models and linear stationary models are explored to 

determine their suitability in modeling agricultural data. 

Introduction 

Time Series data 

The variable containing observations over time is called a time series variable, and the 

dataset is referred to as time series data. Each observation is referenced with a point of time, say, 

date or month, or year, or even in seconds and microseconds. Time series data may be evenly 

spaced, like daily sales data or unevenly spaced, e.g., measuring the weight of animals at 

different periodicities, say, the first few observations are taken daily, the next few observations 

every week, and subsequently on a monthly and annual basis based on the variations in the data. 

A time series is a set of statistics, usually collected at regular intervals. Time series data 

occur naturally in many application areas. 

According to Ya-lun Chou, “A time series may be defined as a collection of readings belonging 

to different periods, of some economic variable or composite of variables.” 

Mathematically, a time series is defined by the functional relationship 

𝑦௧ = 𝑓(𝑡) 
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Where 𝑦௧ is the value of the phenomenon (or variable) under consideration at time t. 

Some examples of typical time series data in agricultural research 

 Annual yield of a particular crop in a particular location over years 

 Consumption of foodgrains over months 

 Sale of pesticides over the years 

 Private investment in agriculture (annual data) 

 Monthly data on employment in the tea garden 

Components of a Time Series Data 
Any time series can contain some or all of the following components: 

1. Trend )( tT  

2. Cyclical )( tC  

3. Seasonal )( tS  

4. Irregular )( tI  

Trend component 

The trend is the long-term pattern of a time series. A trend can be positive or negative, 

depending on whether the time series exhibits an increasing or decreasing long-term pattern. If a 

time series does not show an increasing or decreasing pattern, then the series is stationary in the 

mean. 

E.g., Population growth in India 

Cyclical component 

Any pattern showing an up-and-down movement around a given trend is identified as a 

cyclical pattern. The duration of a cycle depends on the type of business or industry being 

analyzed. 

Seasonal component 

Seasonality occurs when the time series exhibits regular fluctuations during the same 

month (or months) every year, or the same quarter every year. For instance, retail sales peak 

during December. 

E.g., Sales in festive seasons 

Irregular component 
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This component is unpredictable. Every time series has some unpredictable component 

that makes it a random variable. In prediction, the objective is to model all the components to the 

point that the only component that remains unexplained is the random component. E.g.: 

Earthquake 

Fig.1 Components of Time series 

Time Series Decomposition Model 

For analysis of time series data, a model is essential. Generally, two broad approaches are 

resorted to. One is a multiplicative model, and the other is an additive model.   

Let the original observation at the time point to be denoted by tY  and the four 

components, viz., Trend, seasonal, cyclical, and irregular variations by )( tT , )( tS , )( tC and )( tI

respectively, for a time period t (where  t = 1, 2, 3…). 

The following two structures are considered for basic decomposition models: 

              1. Additive: 𝑌௧ = Trend (Tt) + Seasonal (St) + Cyclical (Ct) + Irregular (It) 

              2. Multiplicative: 𝑌௧ = Trend (Tt) x Seasonal (St) x Cyclical (Ct) x Irregular (It) 

Time Series Model 

1. Linear Stationary Time Series Models 

i. Auto-Regressive Model 

ii. Moving Average Model 

iii. ARMA Model (Mixed Model) 

2. Linear Non-Stationary Time Series Models 

i. ARIMA Model 
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Stationary Series 

A series 𝑥௧ is said to be stationary if it satisfies the following properties: 

 The mean E(𝑥௧) is the same for all t. 

 The variance of 𝑥௧ is the same for all t. 

 The covariance (and also correlation) between 𝑥௧ and 𝑥௧ିଵis the same for all t. 

 The Dickey-Fuller test is the most widely used statistical test for stationarity.  To carry out 

the test, estimate using OLS and a regression model. If the series is non-stationary, it can be 

converted to a stationary series by differencing. 

Linear Stationary Time Series Models 

Assume we have a time series without trends or seasonal effects. That is, if necessary, any 

trends or seasonal effects have already been removed from the series. How might we construct a 

linear model for a time series with autocorrelation? 

(1) Autoregressive model of order p: AR(p), which has the general form  

  

Where, 

yt = Response (dependent) variable at time t 

yt-1, yt-2, ………,yt-p = Response variable at time lags t-1, t-2, ……,t-p, 

respectively 

 = Constant mean of the process 

p ..,,........., 21 Coefficients to be estimated 

t = Error term at time t 

(2) Moving Average model of order q: MA(q), which has the general form 
  

  

Where,  

yt = Response (dependent) variable at time t 

 = Constant mean of the process 

tptpttt yyyy    2211

qtqtttty    2211
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q ..,,........., 21 Coefficients to be estimated 

t = Error term at time t Error in previous periods that are incorporated in the 

response yt 

(3) Autoregressive-moving average model of order p and q: ARMA (p,q), which has the 

general form 

 

 

Where, st ' are independently and normally distributed with zero mean and constant 

variance 2 for t = 1,2,…..,n. 

Autocorrelation function (ACF) 

The coefficient of correlation between two values in a time series is called the 

autocorrelation function (ACF). The ACF for a time series 𝑦௧ is given by: 

Cor (𝑦௧,𝑦௧ି௞) 

The value of k is the time gap being considered and is called the lag. 

Partial Autocorrelation Function (PACF) 

In general, a partial correlation is a conditional correlation. It is the correlation between 

two variables under the assumption that we know and takes into account the values of some other 

set of variables. 

For instance, consider a regression context in which y is the response variable and 𝑥ଵ ,𝑥ଶ 

and 𝑥ଷare predictor variables. The partial correlation between y and𝑥ଷis the correlation between 

the variables determined taking into account how both y and𝑥ଷ  are related to𝑥ଵand𝑥ଶ . 

 

 

 

 

qtqtttptpttt yyyy     22112211
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Correlogram 

Graphical approaches to assessing the order of an autoregressive (AR) and moving 

average (MA) model include looking at the ACF and PACF values versus the lag.  The 

correlogram is a two-dimensional graph between the lag k and the autocorrelation coefficient 

𝜌௦which is plotted as lag on the X-axis and 𝜌௦ on the Y-axis. 

The PACF is most useful for identifying the order of an autoregressive model, and the 

ACF is useful for identifying the order of a moving average model. A correlogram gives a 

summary of correlation at different periods of time. The plot shows the correlation coefficient for 

the series lagged (in distance) by one delay at a time. For example, at x=1 you might be 

comparing January to February or February to March. The horizontal scale is the time lag and 

the vertical axis is the autocorrelation coefficient (ACF). 

 

Fig:2 ACF and PACF Plot  
 

In a plot of ACF versus the lag, if you see large ACF values and a non-random pattern, 

then likely the values are serially correlated. In a plot of PACF versus the lag, the pattern will 

usually appear random, but large PACF values at a given lag indicate this value as a possible 

choice for the order of an autoregressive model. It is important that the choice of the order makes 

sense. 
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Tests for Error Normality 

Many of the statistical procedures, including correlation, regression, t tests, and analysis 

of variance, namely parametric tests, are based on the assumption that the data follows a normal 

distribution or a Gaussian distribution that it is assumed that the populations from which the 

samples are taken are normally distributed. The assumption of normality is especially critical 

when constructing reference intervals for variables. Normality and other assumptions should be 

taken seriously, for when these assumptions do not hold, it is impossible to draw accurate and 

reliable conclusions about reality. 

Visual Methods 

Visual inspection of the distribution may be used for assessing normality, although this 

approach is usually unreliable and does not guarantee that the distribution is normal. The 

frequency distribution (histogram), stem-and-leaf plot, boxplot, P-P plot (probability-probability 

plot), and Q-Q plot (Quantile-Quantile plot) are used for checking normality visually. 

The frequency distribution that plots the observed values against their frequency provides 

both a visual judgment about whether the distribution is bell-shaped and insights about gaps in 

the data and outlier values. The stem-and-leaf plot is a method similar to the histogram, although 

it retains information about the actual data values. The P-P plot plots the cumulative probability 

of a variable against the cumulative probability of a particular distribution. 

Fig.3 Normal Quantile-Quantile for Error Diagnostics plot 
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Fig.4 Residual Histogram plot 

Normality Tests for testing the Normality of the series 

For each test discussed below, the formal hypothesis test is written as: 

𝑯𝟎: The errors follow a normal distribution 

𝑯𝟏: The errors do not follow a normal distribution. 

While hypothesis tests are usually constructed to reject the null hypothesis, this is a case where 

we hope we fail to reject the null hypothesis, as this would mean that the errors follow a normal 

distribution. 

1. Anderson-Darling Test 

The Anderson-Darling Test measures the area between a fitted line (based on the chosen 

distribution) and a nonparametric step function (based on the plot points). The statistic is a 

squared distance that is weighted more heavily in the tails of the distribution. Smaller Anderson-

Darling values indicate that the distribution fits the data better. The test statistic is given by: 

 

Where F(⋅) is the cumulative distribution of the normal distribution. The test statistic is compared 

against the critical values from a normal distribution in order to determine the p-value. 
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2. Shapiro-Wilk Test 

The Shapiro-Wilk Test uses the test statistic 

 

Where 𝑒௜pertains to the 𝑖௧௛ largest value of the error terms and the 𝑎௜ values are calculated using 

the means, variances, and covariance’s of the 𝑒௜. W is compared against tabulated values of this 

statistic's distribution. Small values of W will lead to rejection of the null hypothesis. 

3. Ryan-Joiner Test 

The Ryan-Joiner Test is a simpler alternative to the Shapiro-Wilk test. The test statistic is 

actually a correlation coefficient calculated by 

 

Where the 𝑧(௜) values are the z-score values (i.e., normal values) of the corresponding 𝑒௜value 

and 𝑠ଶ is the sample variance. Values of 𝑅௣ closer to 1 indicate that the errors are normally 

distributed. 

Identification 

 At the identification stage, we use two graphical devices to measure the correlation 

between the observations within a single data series. These devices are called an estimated 

Autocorrelation function (ACF) and an estimated partial autocorrelation function (PACF). The 

estimated ACF and PACF are used to measure the statistical relationships within a data series in 

a simple way but they give an idea about the patterns in the available data. Once we have an idea 

about the relationship between the observations in a time series. This relationship is expressed in 

the form of an equation. The basic thinking about the technique is that each process which occurs 

on a time scale has its own theoretical ACF and PACF. As the time series understudy is a 
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particular realization of the process the theoretical ACF and PACF must resemble the estimated 

ACF and PACF of the data series under study. 

Table 1: Pattern of ACF and PACF for AR, MA, and ARMA processes 

Process  ACF PACF 

AR (Auto Regressive)  Decays Towards zero Cut off to zero (lag length of last 

spike is the order of the process)  

MA (Moving Average)  Cut off to zero (lag 

length of last spike is the 

order of the process)  

Decays towards zero 

ARMA (Auto regressive 

and Moving Average) 

Tails off towards zero Tails off towards zero 

 

Before the identification stage, some basic concepts of linear time series analysis, such as 

stationarity, non-stationarity, seasonality, and differencing, are also covered for any model 

building. Here we are discussing all the basic terminologies that are used for model 

identification. 

Stationarity 

The basis of time series analysis is to check whether the data is stationary or not. The 

time series is said to be stationary if the mean, variance and auto-covariance (at various lags) 

does not change regardless of what is the point measure, i.e. it fixed over time (Fig). 
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Fig. 5 Sample path of a stationary process 

Moreover, the time series {rt} is said to be strictly stationary if the joint distribution of rt1 

,..., rtk is identical to that of rt1-s,..., rtk-s for all choices of t1, t2,., tk and all choices of time lag s. In 

other words, strict stationarity requires that the joint distribution of rt1,..., rtk is constant under a 

time shift. A weaker version of stationarity is often assumed.  

 A time series {rt} is weakly stationary if both the mean of rt and the covariance between rt 

and rt−s are time-invariant, where s is an arbitrary integer. More specifically, {rt} is weakly 

stationary if: 

1) E(rt ) = µ, which is a constant, for all t. 

2) Cov(rt, rt−s) = γs, which only depends on all-time t and lag s. 

Non-stationary 

 A time series exhibits non-stationarity if the underlying generating process does not have 

a constant mean and/or a constant variance.  As an example, the series given below displays 

considerable variation, especially since 2001, and a stationary model does not seem to be 

reasonable (Fig). 

 

Fig.6 Sample path of a non-stationary process 
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Seasonality 

 In addition to trend, which has now been provided for, stationary series quite commonly 

display seasonal behavior where a certain basic pattern tends to be repeated at regular seasonal 

intervals. The seasonal pattern may additionally display constant change over time as well. In the 

figure given below, there is a strong upward trend but also a seasonality that can be seen. 

Fig.7 Sample path of a seasonal process 

Just as regular differencing was applied to the overall trending series, seasonal 

differencing (SD) is applied to seasonal non-stationarity as well. And as autoregressive and 

moving average tools are available with the overall series, so too, they are available for seasonal 

phenomena using seasonal autoregressive parameters (SAR) and seasonal moving average 

parameters (SMA).  

Autocorrelation Function (ACF) 

 The most important tool for studying dependence is the sample autocorrelation function. 

The correlation coefficient between any two random variables X, Y, which measures the strength 

of linear dependence between X, Y, always takes values between -1 and 1. If stationarity is 

assumed and the autocorrelation function ρk for a set of lags K = 1,2, ... is estimated by simply 

computing the sample correlation coefficient between the pairs, k units apart in time. The 

correlation coefficient between Yt and Yt−k is called the lag-k autocorrelation or serial correlation 

coefficient of Yt and is denoted by the symbol k , which, under the assumption of weak 

stationarity, is defined as[4,5] 
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Since k  is a correlation, it has the simple properties: 

a) -1 ≤ k  ≤ 1,  k  = k , 0  = 1 

Partial Autocorrelation Function (PACF) 

 `The correlation coefficient between two random variables Yt and Yt-k after removing the 

impact of the intervening Yt-1, Yt-2 ,..., Yt-k +1 is called (PACF) at lag k and denoted by kk . 

11100 1 p   

  

A linear time series model can be tentatively identified by its Autocorrelation function 

(ACF), and Partial Autocorrelation Function (PACF) as follows [6] 

 if 1  is non-zero, this indicates that the series is first-order correlated. 

 If k  tails off geometrically with increasing lags, and the PACF cuts off after a certain 

lag, which means that the model is an autoregressive process. 

 If k  cut off after a small number of lags, and PACF tails off geometrically with 

increasing lags it means that the model is a moving-average process. 

A plot of k  versus lag k is often called a correlogram.  

 White Noise (WN) 

 A very important case of a stationary process is called white noise. For a white noise 

series, all the ACFs are zero or close to zero. If {rt} is normally distributed with zero mean and 

variance σ2 and no autocorrelation, then it is said to be Gaussian white noise.    
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Diagnostic Checking and Forecasting  

 After having estimated the parameters of a tentatively identified ARIMA model, it is 

necessary to do diagnostic checking to verify that the model is adequate. The basic way of 

analyzing the goodness of the model is to check the residuals of the fitted model and the tool for 

analyzing the residuals is the residual ACF. It is assumed that they are independent of each other. 

Therefore, the residual [1]ACF for a properly built ARIMA model will ideally have 

autocorrelation coefficients that are all statistically zero or close to zero. Since the model has 

been estimated from a realization the ACF of the residuals will be subjected to sampling error. 

To test whether the estimated coefficients are statistically zero or not, a t-test is used. If the t-

values for residual autocorrelations are significant, a reformulation of the model has to be done. 

 The final model is used to generate prediction values and then calculate the errors for the 

values obtained by the developed model. 

Box and Jenkins gave the following characteristics of a good ARIMA model -  

1.  It is parsimonious (uses the smallest number of coefficients needed to explain the given 

data) 

2.  It is stationary (has AR coefficients which satisfy some mathematical inequalities). 

3.  It is invertible (has MA coefficients which satisfy some mathematical inequalities).  

4. It has uncorrelated residuals. 

5.  It fits the available data (the past) well enough to satisfy the analyst: 

Root-mean-squared error (RMSE) is acceptable 

6.  It forecasts the future satisfactorily. 

Forecast Performance Measures 

Making Real-Time Forecasts: A Few Points 

We have studied various useful and popular techniques for time series forecasting. For 

the implementation of the model, apply these methods for generating forecasts. While 

applying a particular model to some real or simulated time series, first the raw data is 

divided into two parts, viz., the Training Set and Test Set. [ 5 ]The observations in the training 

set are used for constructing the desired model. Often, a small subpart of the training set is 

kept for validation purposes and is known as the Validation Set. Sometimes, a preprocessing 

ISSN NO : 0363-8057

PAGE NO: 236

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 8 2025



is done by normalizing the data or taking logarithmic or other transforms. One such famous 

technique is the Box-Cox Transformation. Once a model is constructed, it is used for 

generating forecasts. The test set observations are kept to verify how accurately the fitted 

model performed in forecasting these values. If necessary, an inverse transformation is 

applied to the forecasted values to convert them to the original scale. To judge the 

forecasting accuracy of a particular model or to evaluate and compare different models, their 

relative performance on the test dataset is considered. 

Due to the fundamental importance of time series forecasting in many practical 

situations, proper care should be taken while selecting a particular model. For this 

reason, various performance measures are proposed in t h e  literature to estimate 

forecast accuracy and to compare different models. These are also known as performance 

metrics. Each of these measures is a function of the actual and forecasted values of the time 

series. 
 

Description of Various Forecast Performance Measures 

Now we shall discuss about the commonly used performance measures and their 

important properties. In each of the forthcoming definitions, yt is the actual value, f t is the 

forecasted value, et- yt- ft     is the forecast error and n is the size of the test set. Also, 

Test mean 𝑦ത =
∑ ௬೔

೙
೔సభ

௡
  , test variance  𝜎 =  

∑ (௬ି௬ത)మ೙
೔సభ

௡
 

The Mean Forecast Error (MFE) 
 

This measure is defined as MFE = 
∑ ௘౪

೙
೟సభ

௡
. The properties of MFE are: 

 It is a measure of the average deviation of forecasted values from actual 

ones. 

 It shows the direction of error and is thus also termed as the Forecast Bias. 

 In MFE, the effects of positive and negative errors cancel out, and there 

is no way to know their exact amount. 

 A zero MFE does not mean that forecasts are perfect, i.e. contain no error; rather, it 

only indicates that forecasts are on the proper target. 

 MFE does not panelize extreme errors. 
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 It depends on the scale of measurement and also affected by data transformations. 

 For a good forecast, i.e., to have a minimum bias, the MFE should be as close to zero 

as possible. 

The Mean Squared Error (MSE)] 

Mathematical definition of this measure is MSE =
∑ |௘౪|೙

೟సభ

௡
 

 It measures the average absolute deviation of forecasted values from original 

ones. 

 It is also termed as the Mean Absolute Deviation (MAD) It shows the magnitude 

of overall error, occurred due to forecasting. 

 In MAE, the effects of positive and negative errors do not cancel 

out. Unlike MFE, MAE does not provide any idea about the 

direction of errors.  

 For a good forecast, the obtained MAE should be as small as possible. 

 Like MFE, MAE also depends on the scale of measurement and data 

transformations. 

 Extreme forecast errors are not panelized by MAE. 

The Mean Squared Error (MSE) 

Mathematical definition of this measure is MSE = 
∑ ௘౪

మ೙
೟సభ

௡
. 

 It is a measure of average squared deviation of forecasted values. 

 As here the opposite signed errors do not offset one another, MSE gives an overall idea of 

the error occurred during forecasting. 

 It panelizes extreme errors that occurred while forecasting. 

 MSE emphasizes the fact that the total forecast error is much affected by large 

individual errors, i.e., large errors are much expensive than small errors. 

 MSE does not provide any idea about the direction of the overall error. 

 MSE is sensitive to the change of scale and data transformations. 

 Although MSE is a good measure of overall forecast error, it is not as intuitive and easily 

interpretable as the other measures discussed before. 
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The Root Mean Squared Error (RMSE) 

Mathematical definition of this measure =   ට
∑ ௘౪

మ೙
೟సభ

௡
. 

 RMSE is nothing but the square root of the calculated MSE. All the properties of MSE 

hold for RMSE as well. We have discussed ten important measures for judging the forecast 

accuracy of a fitted model. Each of these measures has some unique properties, different from 

others. In experiments, it is better to consider more than one performance criterion. This will 

help to obtain a reasonable knowledge about the amount, magnitude, and direction of overall 

forecast error. For this reason, time series analysts usually use more than one measure for 

judgment.  
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