"Gut-Brain Axis Pharmacology: Mechanistic Insights and Therapeutic Advances"

*Dhara Parekh, Dr. Vipul Gajera, Dr. Tanvi Desai, Chaudhari Priyanka, Shital Patel, Mehul Bagde Shree Naranjibhai Lalbhai Patel College of Pharmacy, Umrakh, Bardoli. Gujarat. India.

Address for Correspondence

Dhara S. Parekh

ABSTRACT

The gut-brain axis (GBA) is a bidirectional network linking the gastrointestinal tract and the central nervous system via neural, endocrine, immune, and metabolic routes. In the last two decades, pharmacology has moved from symptom-focused GI drugs to mechanism-guided interventions that target microbial communities, their metabolites, and host receptors. This review synthesizes recent advances in mechanistic understanding and therapeutics—including antibiotics, fecal microbiota—based products, next-gen "psychobiotics," short-chain fatty acid (SCFA)—informed strategies, bile acid and tryptophan pathway targets, vagus-nerve—centered approaches, and the emerging neuro-metabolic class of GLP-1 receptor agonists—and maps them to clinical opportunities and research gaps.

Keywords: Gut-brain axis, Microbiota-gut-brain communication, Pharmacological modulation, Probiotics / Psychobiotics, Short-chain fatty acids (SCFAs), Fecal microbiota transplantation (FMT)

ISSN NO: 0363-8057

1. INTRODUCTION

GBA research shifted from correlation to causality in the mid-2010s as foundational reviews demonstrated how bacteria affect stress circuits, pain modulation, and neurotransmission. The pathways involving the vagus nerve, immunological signalling, tryptophan metabolism, and metabolites generated from microbes (such SCFAs) were highlighted by these syntheses.^[1]

Early causal evidence came from studies on animals. For instance, through a vagus-dependent mechanism, long-term administration of Lactobacillus rhamnosus (JB-1) changed the expression of central GABA receptors and behaviour resembling anxiety or depression.^[2]

These findings changed the perception of the gut microbiome from a passive metabolic entity to an active player in brain physiology. Preclinical research indicated that microbial diversity can influence stress response, synaptic plasticity, mood, and neuroinflammation, whereas human studies have associated gut dysbiosis with conditions such as depression, anxiety, Parkinson's disease, Alzheimer's disease, autism spectrum disorders, and irritable bowel syndrome (IBS). This change emphasizes the gut-brain axis as a treatment focus with significant consequences for both neuropsychiatry and gastroenterology.

Based on this groundwork, pharmacological approaches have evolved from basic probiotic use to more complex methods. This encompasses psychobiotics (probiotics and prebiotics affecting the CNS), fecal microbiota transplantation (FMT), live biotherapeutic products (LBPs), genetically modified microbial strains that create neurotransmitters, and metabolite-driven therapies (e.g., SCFAs, bile acid modulating agents, tryptophan—kynurenine pathway regulators). Moreover, repurposed neuro-metabolic medications like GLP-1 receptor agonists are being evaluated for cognitive deterioration and neurodegenerative disorders. Collectively, these strategies constitute the pharmacological resources for influencing the GBA.

In spite of this advancement, significant obstacles still exist. The majority of clinical evidence is constrained by small sample sizes, strain specificity, variability in trial designs, and absence of mechanistic understanding. Data on long-term safety is limited, and the regulatory classifications of probiotics, LBPs, and FMT vary inconsistently by region. Additionally, although many narrative and systematic reviews exist, only a handful have concentrated on recent pharmacological developments and their associated translational challenges. Therefore, it is essential to unify and thoroughly assess new pharmacological approaches aimed at the GBA.

Extent of the evaluation. This article offers an extensive summary of the current trends in pharmacological modification of the gut-brain axis, emphasizing therapeutic uses in neurological, psychiatric, and gastrointestinal conditions. It explores the mechanistic foundation of microbial—neurochemical interactions, reviews existing pharmacological treatments, and critically assesses the obstacles, debates, and constraints that impede clinical application. Ultimately, the review highlights future paths, focusing on precision microbiome therapy, advanced psychobiotics, and combined hybrid approaches that have the potential to turn the GBA from a theoretical idea into a widely accepted treatment model.

2. KEY SIGNALING ROUTES WORTH TARGETING

2.1 Vagal channels:

One of the most effective pathways for bottom-up communication from the gut to the brain is the vagus nerve. Vagal afferents are sensors of microbial and metabolite signals, according to recent reviews and preclinical studies; selective vagotomy prevents some probiotics from having their behavioural benefits, and changes in the microbiome brought on by stress modify neurogenesis and impact vagal integrity. [3]

2.2 Tryptophan-serotonin metabolism:

Microbial composition is linked to motility, platelet function, and possibly mood and cognition. Microbes control the manufacture of serotonin in colonic enterochromaffin-cells, while native spore-forming bacteria boost host 5-HT biosynthesis.^[4]

2.3 Short-chain fatty acids (SCFAs)

ISSN NO: 0363-8057

In epithelial, immune, and neural cells, SCFAs (acetate, propionate, butyrate) influence FFAR2/FFAR3 and HCAR2, influencing inflammation and microglial homeostasis. New research clarifies how SCFAs affect neuroimmune tone and stroke recovery, but cautions that context is important (e.g., models linking SCFAs to $\Delta\beta$ dynamics). [5][6]

3. PHARMACOLOGIC CLASSES

3.1 Non-absorbable antibiotics and "eubiotic" effects

Rifaximin—minimally absorbed and gut-selective—reduced breakthrough hepatic encephalopathy (HE) and HE-related hospitalizations in a landmark phase 3 trial, likely through ammonia-lowering and microbiome modulation. This remains a touchstone example of GBA-relevant pharmacology with hard clinical endpoints. [7]

3.2 Fecal microbiota-based therapies (FMT, LBPs)

An important boundary for GBA medicines and evidence standards is that the updated 2024 AGA guidelines advise against routine use of faecal microbiota-based therapy in IBD or IBS, but support them primarily for recurrent C. difficile infections.^{[8][9]}

3.3 Probiotics, prebiotics, and symbiotics ("psychobiotics")

Recent meta-analyses suggest probiotics can reduce depressive symptoms and, to a lesser extent, anxiety, though heterogeneity and strain specificity remain challenges; trial designs increasingly include microbiome and neuroimaging readouts. A mechanistic RCT in major depression showed that short-term high-dose probiotics modulated gut taxa and neural markers alongside symptom improvement, illustrating the field's shift toward biomarker-anchored endpoints. [10][11]

3.4 Neuro-metabolic incretin therapies (GLP-1 receptor agonists)

GLP-1 RAs (e.g., semaglutide, liraglutide) have central actions that intersect with the GBA: they influence appetite circuits, neuroinflammation, and neurovascular coupling; 2024–2025 reviews and preclinical/clinical syntheses highlight emerging neuroprotective effects across Parkinson's disease and cognitive impairment. Combination agonists (e.g., GLP-1/GIP, GLP-1/GIP/GCGR) further expand this space. [12][13][14][15]

4. THERAPEUTIC IMPLICATIONS

4.1 Functional GI disorders and affective comorbidity

In order to frame the overlap between IBS and anxiety/depression as a systems problem, the 2021 "Motility to Mood" review integrated serotonergic signalling, visceral pain, and central networks with microbiome readouts. This was useful for creating multi-modal trials that combine GI agents (such as 5-HT4 agonists) with adjuncts that target the microbiota. [16]

4.2 Neurodegeneration (Parkinson's disease as a case study)

A significant preclinical study connected gut bacteria to microglial activation and α -synuclein-driven motor dysfunctions; human research demonstrates PD-associated dysbiosis linked to motor phenotype. This supports studies that combine microbiota-modulating techniques, dopaminergic treatment, and possibly GLP-1 RAs to modify illness. [17]

4.3 Mood disorders

ISSN NO: 0363-8057

ISSN NO: 0363-8057

Replication with standardised strains, dose, and outcomes is the primary objective for 2025, despite the fact that strain-specific probiotic effects and combination "biotics" regimens have demonstrated signal in depression and anxiety.^{[18][19]}

5. MODULATORS AND TARGETS: [20][21][22][23]

- 5.1 **Microbial consortia & engineered strains.** Next-gen LBPs designed to produce or degrade specific neuroactive metabolites (e.g., GABA, kynurenines) are advancing, inspired by early probiotic-vagal findings.
- 5.2 SCFA-informed approaches. Butyrate donors and fiber strategies are attractive; however, divergent effects across models (neuroprotective vs. amyloid-promoting contexts) mandate careful phenotyping and dose-timing studies.
- 5.3 Tryptophan-serotonin axis. Targeting microbial drivers of enterochromaffin 5-HT synthesis, or host SERT/5-HT receptors, could unify GI and CNS outcomes; Yano et al. provide the mechanistic foundation.
- 5.4 **Vagus-directed interventions.** Vagus nerve stimulation (VNS) and bioelectronic approaches are being re-examined through the microbiome lens; early evidence suggests bidirectional interactions and the need to stratify by microbiome state.
- 5.5 **GLP-1 and incretin polyagonists**. Beyond weight loss and glycemia, these agents may dampen neuroinflammation, improve cerebrovascular function, and engage reward circuitry—integral to GBA-relevant symptoms such as appetite, anhedonia, and cognition.

6. principles for GBA pharmacology

- 6.1 **Mechanism-anchored endpoints:** Pair clinical scales (e.g., HAM-D, IBS-SSS) with mechanistic measures: fecal/serum metabolomics, vagal tone indices, fMRI, and cytokine panels. The MDD probiotic RCT shows this transition. [24]
- 6.2 **Strain specificity & dosing:** Meta-analyses show overall benefit signals, but effects depend on strain, dose, duration, and host phenotype—standardization is essential.
- 6.3 **Safety & indication discipline:** Follow current guidelines for FMT: use in rCDI after antibiotics; avoid routine use in IBD/IBS outside trials.
- 6.4 **Combinatorial regimens:** Consider "stacked" techniques (dietary fiber → SCFA milieu; targeted probiotic → vagal signaling; GLP-1 RA → central satiety/inflammation) with factorial designs to find interactions. ^[25]

7. CHALLENGES AND LIMITATIONS

- 7.1 **Inter-individual variability**: Gut microbiome composition varies by diet, geography, genetics, and environment, which complicates reproducibility of clinical findings.
- 7.2 **Causality vs. correlation:** Most human studies are associative; establishing direct causation remains challenging despite strong animal evidence.
- 7.3 **Strain specificity of probiotics:** Benefits are strain-, dose-, and duration-dependent; lack of standardized formulations weakens evidence for psychobiotics.
- 7.4 **Safety concerns with FMT and LBPs:** Fecal microbiota transplantation carries risks of pathogen transmission, and live biotherapeutics lack uniform safety regulations.

- ISSN NO: 0363-8057
- 7.5 **Context-dependent metabolites:** Short-chain fatty acids (SCFAs) and bile acids can have neuroprotective or deleterious roles depending on host condition and disease stage.
- 7.6 **Heterogeneity in trial design:** Many clinical studies suffer from small sample sizes, short follow-up, and lack of integrated biomarkers, limiting clinical translation.
- 7.7 **Regulatory challenges:** Probiotics, nutraceuticals, and engineered strains are variably classified as foods or drugs, creating hurdles for approval and commercialization.
- 7.8 **Insufficient long-term safety data:** Chronic use of microbial therapies or metabolite-based interventions is not well studied in vulnerable groups such as elderly and immunocompromised patients.

8. FUTURE PERSPECTIVE

- 8.1 **Precision microbiome medicine:** Integration of metagenomics, metabolomics, and AI could enable personalized microbial interventions tailored to host genetics and baseline microbiota.
- 8.2 **Next-generation psychobiotics:** Engineered probiotics designed to produce neurotransmitters (e.g., GABA, serotonin precursors) or anti-inflammatory molecules are under preclinical exploration.
- 8.3 **Neuromodulation integration:** Combining vagus nerve stimulation (VNS) with microbiota-based interventions may provide synergistic benefits in depression, epilepsy, and IBS.
- 8.4 **Metabolite-based pharmacology:** Butyrate donors, bile acid receptor modulators, and kynurenine-pathway regulators are being tested as safer, targeted alternatives to whole-microbiome therapies.
- 8.5 **Neuro-metabolic drug repurposing:** GLP-1 receptor agonists (e.g., semaglutide, liraglutide) show promise in Parkinson's disease and cognitive decline beyond diabetes and obesity.
- 8.6 **Hybrid therapeutic strategies:** Future trials should combine diet, probiotics, metabolite modulators, and central drugs in factorial designs to capture additive or synergistic effects.
- 8.7 **Standardized clinical trials:** Large-scale, long-term, biomarker-anchored RCTs with harmonized endpoints (e.g., IBS-SSS, HAM-D, PD scales) are essential.
- 8.8 **Regulatory frameworks:** Clear global guidelines for probiotics, LBPs, and FMT are needed to ensure reproducibility, safety, and physician adoption.
- 8.9 **Disease-specific prioritization:** Strongest evidence currently lies in depression, Parkinson's disease, IBS, and hepatic encephalopathy—these should be the first targets for large clinical programs.
- 8.10 **Public health integration:** Low-cost microbiota-targeted strategies (fiber-rich diets, fermented foods) should complement advanced pharmacological interventions for wider accessibility.

9. Conclusion

The gut-brain axis has come to be recognized as an essential two-way communication network that connects neural, endocrine, immune, and metabolic systems. In the last twenty years, the pharmacological manipulation of this axis has moved from preclinical studies to clinical application, with increasing evidence connecting microbiota—brain interactions to conditions like depression, anxiety, Parkinson's disease, Alzheimer's disease, and irritable bowel syndrome.

Recent developments emphasize the therapeutic possibilities of probiotics, prebiotics, fecal microbiota transplantation, microbial metabolite modulators, and drug repurposing approaches (e.g., GLP-1 receptor agonists) in reestablishing gut-brain balance. Nevertheless, existing results continue to be

ISSN NO: 0363-8057

limited by individual differences, strain specificity, unclear mechanisms, safety issues, and regulatory obstacles. These obstacles highlight the critical necessity for standardized, long-term, biomarker-based clinical trials to determine efficacy and safety among various populations.

In the future, precision microbiome medicine—driven by systems biology, artificial intelligence, and advanced psychobiotics—provides a pathway to personalized treatments. Hybrid approaches that integrate dietary changes, metabolite-focused pharmacology, neuromodulation, and standard CNS medications could offer combined advantages. Additionally, easily available public health strategies like diets rich in fiber and fermented foods can enhance advanced interventions, ensuring wider translational effects.

In conclusion, the pharmacological manipulation of the gut-brain axis signifies a hopeful frontier in neuropsychopharmacology and gastroenterology. Connecting mechanistic understanding with translational research, while incorporating regulatory frameworks with precision.

10. ACKNOWLEDGMENT:

We are grateful to the Shree Naranjibhai Lalbhai Patel College of Pharmacy, Umrakh, Gujarat, India for the excellent research facilities supported throughout the work.

11. REFERENCES:

- 1. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K.: Gut/brain axis and the microbiota, 2015, J Clin Invest, 125(3), 926–938.
- Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG.: The Microbiota–Gut–Brain Axis, 2019, Physiol Rev, 99(4), 1877–2013.
- 3. Bruno B, Thomas B, Sonia P: The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis, Frontiers in Neuroscience, 2018, 12(49), 1-9
- 4. Jessica MY, Kristie Yu, Gregory P, Gauri G, Phoebe A, Liang M, Cathryn R, Rustem F, Sarkis K, Elaine Y: Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis, Cell, 2015, 161(2), 264-76
- 5. Qingyu C, Mengmeng S, Ruoqiu L, Yan L, Zhen Z, Jidong Z, Dejun N, Quancai Z, Rongrong W, Jingchun Y, Guimin Z.: Elucidating the specific mechanisms of the gut-brain axis: the short-chain fatty acidsmicroglia pathway, Journal of Neuroinflammation, 2025, 22(133).
- 6. Silva YP, Bernardi A, Frozza RL.: The role of short-chain fatty acids from gut microbiota in gut-brain communication, 2020, Frontiers in Endocrinology, 11, 25.
- Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, Sigal S, Sheikh MY, Beavers K, Frederick T, Teperman L, Hillebrand D, Huang S, Merchant K, Shaw A, Bortey E, Forbes WP.: Rifaximin treatment in hepatic encephalopathy, 2010, The New England Journal of Medicine, 362(12), 1071–1081.
- Allegretti JR, Kassam Z, Mullish BH, Chiang A, Kelly C, Fischer M, Kassam N, Kao D, Fischer M, Allegretti JR.: American Gastroenterological Association Clinical Practice Guideline on fecal microbiota-based therapies for gastrointestinal disease, 2024, Gastroenterology, 166(2), 421–432.
- 9. Peery AF, Shaukat A, Dellon ES.: AGA Clinical Practice Guideline on Fecal Microbiota—Based Therapies for Select Gastrointestinal Diseases, Gastroenterology, 2024, 166(3), :409–434

- Afrida A, Megan K, Sufen Z, Xue D, Min G,: Effects of Prebiotics and Probiotics on Symptoms of Depression and Anxiety in Clinically Diagnosed Samples: Systematic Review and Metaanalysis of Randomized Controlled Trials, Meta-Analysis, 2024, 83(7):e1504–e1520
- 11. Ziran Z, Gui X, Jieqiong X, Honghua G, Xiaoli Y, Qian J, Hu W, Jiaji H, Caihong Z.: Effectiveness of probiotic/prebiotic/synbiotic treatments on anxiety: A systematic review and meta-analysis of randomized controlled trials, Journal of Affective Disorders, 2023, 343, 9-21
- 12. Bandy C, Xiaofei Y, Claudia HD, María JO, Matthias HT, Ania MJ, Marc S, : Cell Metabolism Perspective: GLP-1 programs the neurovascular landscape. 2024, 36(10), 2173-2189
- 13. Dongliang L, Peng F, Xueying G, Zhaona L, Dongfang L, Cunshui X, Bo BI, Christian H.: Neuroprotective effects of GLP-1 receptor agonists in Parkinson's disease: A review, 2024, Front Pharmacol, 15, 1185321
- 14. Akash R, Valina LD, Ted MD,: From metabolism to mind: The expanding role of the GLP-1 receptor in neurotherapeutics, Neurotherapeutics, 2025, 22(1), 145–162.
- 15. Zhikai Z, Yao Zong, Y, Yucheng T, Yidan P, Changqing Z, Junjie G.: Glucagon-like peptide-1 receptor: mechanisms and advances in therapy, signal transduction and targeted therapy, 2024, 234,
- 16. Kara G, John F, Emeran A,: The Microbiota-Gut-Brain Axis: From Motility to Mood, Gastroenterology, 2021, 160(5), 1486-1501
- 17. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK.: Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease, 2016, Cell, 167(6), 1469–1480.
- 18. Maryam R, Mohadeseh P, Roya M, Mohammad A, Amir H, Mehdi G, Ali K, Hamid R, Majid S, Mohammad Javad N, Leonardo A.: Strain-specific effects of probiotics on anxiety and depression: A systematic review and meta-analysis, 2024, Gut Pathog, 16, 4.
- 19. Esben S, Matthew B, Sophie P, Gabrielle R, Susanna C, Luis V.: Probiotics and magnesium orotate for the treatment of major depressive disorder: a randomised double blind controlled trial, nature, 2024, 20841,
- 20. Sadler R, Cramer JV, Heindl S, Kostidis S, Betz D, Zuurbier KR, Yu S, Wohlfahrt J, Steinmetz H, Dirnagl U, Meisel C, Braun JS, Meisel A.: Short-chain fatty acids improve post-stroke recovery via immunological mechanisms, 2020, J Neurosci, 40(5), 1162–1172.
- 21. Alessio C, Rebecca S, Gemma L, Vikramjeet S, Stefan R, Steffanie H, Laura M, Aswin V, Finn P, Samira P, Frits K, Mercedes A, Andrew M, Edith W, Jochen H, Corinne B, Martin D, Harald S, Martin G, Christian H, Sabina T, Arthur L.: Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition, *eLife*. 2021, 10, e59826.
- 22. Breit S, Kupferberg A, Rogler G, Hasler G.: Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders, 2018, Front Psychiatry, 9, 44.
- 23. Navid F, Bahareh P, Negar E, Ali G.: Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders, Neuroscience and Biobehavioral Reviews, 2024, 169 (2025) 105990
- 24. Anna-Chiara S, Else S, Jorge V, Nina S, Cedric K, Jessica D, Gulnara Y, Laura M, Serge B, Christoph B, Stefan B, Jeroen R, André S, Undine L.: Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial, Translational Psychiatry, 2022, 12, 227
- 25. Boushra D, Lukas V, Bram V, Kristin V.: The role of short-chain fatty acids in microbiota–gut–brain communication, Nature Reviews Gastroenterology & Hepatology, 2019, 16, 461–478