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Abstract: This paper introduces CryptoGAN, a novel framework for generating high-entropy
cryptographic keys. Addressing the vulnerabilities of deterministic methods, our approach
functions as a True Random Number Generator (TRNG) by seeding a Wasserstein Generative
Adversarial Network with Gradient Penalty (WGAN-GP) with physical entropy from chaotic audio
sources. The GAN learns the underlying entropy distribution to synthesize unpredictable 256-bit
seeds. These are securely expanded into 1 Mbit keys using the HMAC-based Key Derivation
Function (HKDF). Comprehensive evaluation demonstrates that the generated keys achieve
near-ideal Shannon entropy, successfully pass all NIST randomness tests, and exhibit strong
resistance to cryptanalytic attacks. CryptoGAN offers a robust, efficient, and portable solution for
secure key generation in modern cryptographic systems.
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1. Introduction

Cryptographic systems rely critically on secure and unpredictable keys. The strength of modern
encryption mechanisms is determined not only by algorithmic robustness but also by the entropy
quality of the underlying key generation process. Pseudorandom number generators (PRNGs) are
widely deployed in practice; however, their deterministic nature exposes them to potential state
recovery and prediction attacks, especially in adversarial or resource-constrained environments.
This limitation has motivated the establishment of true random number generators (TRNGs) which
exploit physical and environmental entropy sources to ensure unpredictability.

Recent research highlights diverse entropy harvesting mechanisms, ranging from environmental
audio, [1], [2] and video signals, [3] to hardware-level sensors such as MEMS, [9] and RF noise.
[13] Raw randomness from these sources often exhibits bias, requiring post-processing through
chaotic systems, [4], [12] or entropy estimation techniques, [10] to improve statistical quality. In
parallel, machine learning—particularly Generative Adversarial Networks (GANs)—appears to be
a fruitful path for entropy modeling and key synthesis. GANs and their variants, including
WGAN-GP, have demonstrated effectiveness in generating statistically robust pseudo-random
sequences. [6]-[8]

While prior work has explored physical entropy sources, [1-3] and GANs for randomness
generation, [6-8] independently, a significant gap remains in systematically integrating these two
domains. Physical entropy sources, though non-deterministic, can exhibit subtle biases or
correlations that are difficult to remove with traditional post-processing. Conversely, GANs trained
on purely synthetic data may fail to capture the complex, chaotic properties of true physical
randomness. CryptoGAN addresses this critical gap by creating a synergistic framework where
physical entropy provides a high-quality, unpredictable foundation, and the WGAN-GP learns to
model, refine, and amplify this randomness, effectively filtering out statistical weaknesses.

The primary contributions of this work are threefold:
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1. A Novel Hybrid Framework: We propose and implement a unique architecture that
integrates chaotic environmental audio as a physical entropy source with a WGAN-GP for
robust key synthesis. This moves beyond theoretical models to a practical, end-to-end
system.

2. Comprehensive Empirical Validation: The generated keys are subjected to a rigorous
suite of over 13 statistical, entropy, and cryptanalytic tests, providing a thorough and
multi-faceted assessment of their quality and security that surpasses standard validation
approaches.

3. An Open-Source and Portable System: We provide an open-source implementation of
CryptoGAN, delivering a reusable and accessible tool for researchers and practitioners to
generate high-entropy cryptographic keys for a wide range of applications, thereby
promoting transparency and reproducibility.

2. Materials and Methods

The proposed CryptoGAN framework integrates chaotic physical entropy sources with
adversarial learning to generate high-entropy cryptographic keys. The system was implemented in
Python 3.11 using PyTorch, NumPy, SciPy, and Cryptography libraries.The entire process is shown
in Figure 1.

Adversarial Key Generator
(WGAN-GP) L

Y

Chaotic Entropy Extraction

Binary Key Sampling
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Evaluation and Testing < Key Expansion (HKDF)

Figure 1. Entire CryptoGAN Pipeline

2.1. Chaotic Entropy Extraction

Environmental audio files (e.g., rain.wav, traffic- wav) were used as physical entropy sources.
Each audio stream was segmented into fixed-length windows of 1024 samples and hashed using
the SHA-256 algorithm to generate 256-bit entropy vectors. Hashing serves a dual purpose: it
condenses the chaotic information into a fixed-size output and removes potential biases present in
the raw audio, resulting in a uniform distribution of bits that forms the real entropy dataset for
training the adversarial network.
2.2. Adversarial Key Generator (WGAN-GP)

A WGAN-GP was implemented with a 3-layer MLP for both the Generator and Discriminator,
as depicted in Figure 2.

2.2.1. Model Rationale

WGAN-GP was selected over standard GANSs to prevent training failures like mode collapse
and vanishing gradients. It stabilizes training by pairing the Wasserstein distance loss function with
a gradient penalty (enforcing the Lipschitz constraint), which produces higher-quality, more
diverse outputs.

2.2.2. Network Architecture

The Generator learns to map a 256-dimensional latent vector (sampled from a normal
distribution) to a 256-bit synthetic entropy vector. The Discriminator (or critic) learns to
differentiate between the real entropy vectors from the audio source and the synthetic ones from
the Generator. The model was trained up to 1000 epochs employing batch size of 32, along with
the learning rate of le-4, and a gradient penalty A = 10.
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Figure 2. WGAN-GP Architecture

2.3. Binary Key Sampling

The generator's continuous floating-point outputs are thresholded at zero to produce 256-bit
binary keys. For practical cryptographic use, the seeds are scaled using an HMAC-based
Extract-and-Expand Key Derivation Function (HKDF) with the SHA-256 hash function.. This
two-phase process is critical for security: the 'extract' phase concentrates the entropy of the input
seed into a fixed-length pseudorandom key (PRK), and the 'expand' phase uses this PRK to
generate a longer, cryptographically strong key of 1,000,000 bits.

Generator Output Threshold at 0
(Floating-point vector) value <0 — bit=0
[-1,+1] value >0 — bit =1

Y

Y

Binary Sequence (256-bit Key)

Figure 3. Binary Key Sampling and Validation Process

This method ensures that the final key has high entropy distributed uniformly across its entire
length and is resistant to attacks even if the initial seed has minor, undiscovered biases. [14] The
final keys were exported in multiple formats for portability (binary, NumPy, Base64, hex, and QR
code).

2.4. Key Expansion with HKDF

Although the GAN generates a secure 256-bit seed key, many protocols require longer keys. We

need to scale that seed key to make it usable across a wider variety of applications.

To accomplish this, we use the HMAC-based Key Derivation Function (HKDF), which is
standardized in RFC 5869 [14]. HKDF is a function specifically designed to take initial keying
material (our 256-bit seed) and safely transform it into one or more new, cryptographically strong
secret keys of the required length.

This HKDF process contains two stages:

1. Extract: In the initial stage, HKDF takes the 256-bit seed key from the GAN and a salt
(which can be a random value or an empty string) and applies the HMAC-SHA256
function. This "extract" phase concentrates the entropy of the input keying material into a
fixed-length pseudorandom key (PRK). This step is crucial as it ensures that even if the
input seed has some minor statistical weaknesses, the resulting PRK will be a
high-entropy key.

2. Expand: In the second stage, the PRK is used to generate a longer output key of the
desired length (in this case, 1 Mbit). The "expand" phase repeatedly applies the
HMAC-SHA256 function to the PRK and a changing context-specific info string to
produce multiple blocks of output, which are then concatenated to form the final 1 Mbit
key.
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This two-phase process ensures that the final key is not only long but also preserves the entropy
and pseudorandomness of the initial seed, making it resistant to various cryptanalytic attacks,
including those based on partial key recovery. The key expansion process is depicted in Figure 4.

256-bit Seed Key N HKDF-SHA256 Expanded Key
(from Binary Sampling) 7 Extract + Expand g (1,000,000 bits / 1 Mbit)
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Y

Binary | Hex | Base64 | QR Code

Figure 4. Key Expansion (HKDF) Process

2.5. Evaluation and Testing

The CryptoGAN system was implemented in Python 3.11, leveraging several key libraries. The
WGAN-GP model was built and trained using PyTorch, a powerful deep learning framework.
Numerical operations and data manipulation were handled by NumPy and SciPy. The
cryptographic operations, specifically the SHA-256 hashing and the HKDF expansion, were
performed using the cryptography library, which provides robust and standardized implementations
of cryptographic primitives.

The generated 1 Mbit keys were subjected to a comprehensive evaluation pipeline consisting of
three classes of tests:

1. Statistical Tests: (Monobit, Chi-Square, Runs, Maurer’s Universal, Spectral) to detect
simple statistical defects and non-random patterns.

2. Entropy Tests: (Shannon, Min-entropy, Collision, Sample, Permutation, Markov) to
quantify the level of unpredictability and randomness from an information-theoretic
perspective.

3. Cryptanalytic Resistance Checks: (Seed—key correlation, Key Invertibility, Mutual
Information) to assess the key's resilience against specific inference and modeling attacks.

A generated key is considered cryptographically secure only upon the successful passage of this
entire suite of tests, confirming both its statistical randomness and its resilience to cryptanalytic
inference.

3. Results and Discussion

The CryptoGAN framework was evaluated by generating and validating cryptographic keys
derived from chaotic environmental audio. The quantitative performance evaluation confirms that
the system consistently produces high-quality cryptographic keys. The final Shannon entropy of
approximately 0.9996 indicates near-ideal randomness, suggesting that each bit in the sequence
carries the maximum possible amount of information.

The statistical tests, detailed in Table 1, all yielded high p-values (>> 0.01), failing to reject the
null hypothesis of randomness. This demonstrates that the generated bitstreams are free from
simple statistical biases and are indistinguishable from true random sequences.

Table 1. Statistical Tests

Test Description Result (p-value)
Monobit Test Balance of Os and 1s 0.5123
Chi-Square Test Uniformity of bits 0.4991

VOLUME 11 ISSUE 9 2025 PAGE NO: 250



GRADIVA REVIEW JOURNAL

ISSN NO : 0363-8057

Test Description Result (p-value)
Runs Test Randomness of sequences 0.5034
Maurer’s Universal Pattern detection 0.6729
Spectral Entropy Frequency randomness 0.4877

The entropy metrics in Table 2 further support this, with high values for Min-entropy and Collision

entropy confirming unpredictability even under worst-case assumptions.

Table 2. Entropy-Based Evaluation

Test Description Result (bits)
Shannon Entropy Avg. info per bit 0.9996
Min Entropy Worst-case predictability 0.9991
Collision Entropy Repetition likelihood 0.9994
Sample Entropy Complexity 0.9852
Permutation Entropy Temporal structure 2.8715
Markov Entropy Transition probabilities 1.9998

The cryptanalytic tests shown in Table 3 confirm the system's security. The negligible seed-key
correlation (-0.0012) and low mutual information (0.0031) indicate that the relationship between
the initial seed and the final key is obscured, preventing inference attacks. The high mean squared
error (1.054) for key invertibility suggests that it is computationally infeasible to reverse-engineer
the latent vector from a given key output, demonstrating robustness against model inversion

attacks.
Table 3. Cryptanalytic Resistance
Test Description Result
Seed-Key Correlation Correlation check -0.0012
Key Invertibility Latent recovery 1.054
Mutual Information (MINE) Dependency check 0.0031

4. Conclusion

This paper presented CryptoGAN, a GAN-based cryptographic key generation framework that
combines chaotic environmental audio entropy with adversarial learning. Experimental results
confirmed that the generated keys achieved near-ideal entropy (Shannon entropy = 0.9996) and
passed a suite of over 13 statistical, entropy-based, and cryptanalytic resistance tests. These results
validate CryptoGAN as a robust, lightweight, and portable solution for secure key generation,

particularly  in

environments

where

hardware-based TRNGs

are unavailable or

resource-constrained. Future work will explore hardware acceleration on FPGA/ASIC platforms,
the design of lightweight models for IoT deployment, extension to decentralized systems for
blockchain protocols, and the incorporation of post-quantum cryptographic resistance tests.

VOLUME 11 ISSUE 9 2025

PAGE NO: 251



GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

5. Acknowledgment

The authors gratefully acknowledge the support and research facilities provided by the
Department of Computer Science and Systems Engineering, Andhra University College of
Engineering.

6. References

[1] P. Raghunath, S. Patil, and M. Yardi, “Design and implementation of TRNG using audio signals for secure
key generation”, Proc. Int. Conf. Comput. Intell. Commun. (ICCIC), (2016).

[2]J. Teh, L. M. Kiah, and T. C. Ling, “Audio-based TRNG using hyperchaotic maps for cryptographic
applications”, Multimedia Tools Appl., vol. 78, no. 3, (2019), pp. 2971-2986.

[3] D. Kutschera, P. Leu, and D. Basin, “True random number generation on smartphones from ambient
audio and video”, Proc. ACM Conf. Comput. Commun. Security (CCS), (2021), pp. 1499-1512.

[4] Y. Liu, X. Zhao, and C. Li, “Post-processing of software TRNG using parameter-perturbed hyperchaotic
systems”’, IEEE Access, vol. 9, (2021), pp. 137568—137580.

[5] L. Bassham, A. Rukhin, J. Soto et al., “A statistical test suite for random and pseudorandom number
generators for cryptographic applications”, NIST SP 800-22 Rev. 1a, (2010).

[6] K. Okada, K. Endo, K. Yasuoka, and S. Kurabayashi, “Learned pseudo-random number generator:
WGAN-GP for generating statistically robust random numbers”, PLOS ONE, vol. 18, no. 6, (2023),
e0287025.

[7] X. Wu, Y. Han, M. Zhang, Y. Li, and S. Cui, “GAN-based pseudo random number generation optimized
through genetic algorithms”, Complex Intell. Syst., vol. 11, (2025), Art. no. 31.

[8] D. Bernardi, S. Khouzani, and F. Malacaria, “Pseudo-random number generation using generative
adversarial networks”, Proc. 5th Workshop on Artificial Intelligence and Security (AlSec), ser. LNCS
11840, Springer, (2019), pp. 197-212.

[9] A. Smith and B. Nguyen, “Lightweight TRNG designs using MEMS sensors for IoT devices”, IEEE
Internet Things J., vol. 7, no. 5, (2020), pp. 4123—4135.

[10] L. Chen, Y. Huang, and Z. Wang, “Entropy estimation techniques for chaotic time series in
hardware TRNGs ", IEEE Trans. Circuits Syst. I, vol. 67, no. 11, (2020), pp. 3902-3913.

[11] J. Lee and S. Park, “Audio entropic key generation for secure wireless communication”, Proc.
IEEE GLOBECOM, (2019), pp. 1-6.

[12] M. Kapoor, R. Verma, and P. Kumar, “Chaotic map-based hashing for entropy amplification in key
generation”, IEEE Trans. Dependable Secure Comput., vol. 18, no. 2, (2021), pp. 543-556.

[13] F. Garcia and E. Pena, “Mobile-based TRNG using RF ambient noise”, Sensors, vol. 21, no. 4,
(2021), Art. no. 1345.

[14] H. Krawczyk and P. Evonen, “HMAC-based extract-and-expand key derivation function (HKDF)”,
IETF RFC 5869, (2010).

[15] B. Blanchet, L. Lipp, and B. Bhargavan, “Mechanized cryptographic proof of the WireGuard VPN
protocol”, Proc. IEEE EuroS&P Workshops, (2019), pp. 47-54.

VOLUME 11 ISSUE 9 2025 PAGE NO: 252



	CryptoGAN: A GAN-Based Cryptographic Key Generator with Physical Entropy Seeding 
	1. Introduction 
	2. Materials and Methods 
	2.1. Chaotic Entropy Extraction 
	2.2. Adversarial Key Generator (WGAN-GP) 
	2.2.1. Model Rationale 
	2.2.2. Network Architecture 

	2.3. Binary Key Sampling 
	2.4. Key Expansion with HKDF 
	2.5. Evaluation and Testing 

	3. Results and Discussion 
	 
	4. Conclusion 
	5. Acknowledgment 
	6. References 

