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Abstract: This paper introduces CryptoGAN, a novel framework for generating high-entropy 
cryptographic keys. Addressing the vulnerabilities of deterministic methods, our approach 
functions as a True Random Number Generator (TRNG) by seeding a Wasserstein Generative 
Adversarial Network with Gradient Penalty (WGAN-GP) with physical entropy from chaotic audio 
sources. The GAN learns the underlying entropy distribution to synthesize unpredictable 256-bit 
seeds. These are securely expanded into 1 Mbit keys using the HMAC-based Key Derivation 
Function (HKDF). Comprehensive evaluation demonstrates that the generated keys achieve 
near-ideal Shannon entropy, successfully pass all NIST randomness tests, and exhibit strong 
resistance to cryptanalytic attacks. CryptoGAN offers a robust, efficient, and portable solution for 
secure key generation in modern cryptographic systems. 
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1. Introduction 
 

Cryptographic systems rely critically on secure and unpredictable keys. The strength of modern 
encryption mechanisms is determined not only by algorithmic robustness but also by the entropy 
quality of the underlying key generation process. Pseudorandom number generators (PRNGs) are 
widely deployed in practice; however, their deterministic nature exposes them to potential state 
recovery and prediction attacks, especially in adversarial or resource-constrained environments. 
This limitation has motivated the establishment of true random number generators (TRNGs) which 
exploit physical and environmental entropy sources to ensure unpredictability. 

Recent research highlights diverse entropy harvesting mechanisms, ranging from environmental 
audio, [1], [2] and video signals, [3] to hardware-level sensors such as MEMS, [9] and RF noise. 
[13] Raw randomness from these sources often exhibits bias, requiring post-processing through 
chaotic systems, [4], [12] or entropy estimation techniques, [10] to improve statistical quality. In 
parallel, machine learning—particularly Generative Adversarial Networks (GANs)—appears to be 
a fruitful path for entropy modeling and key synthesis. GANs and their variants, including 
WGAN-GP, have demonstrated effectiveness in generating statistically robust pseudo-random 
sequences. [6]–[8] 

While prior work has explored physical entropy sources, [1-3] and GANs for randomness 
generation, [6-8] independently, a significant gap remains in systematically integrating these two 
domains. Physical entropy sources, though non-deterministic, can exhibit subtle biases or 
correlations that are difficult to remove with traditional post-processing. Conversely, GANs trained 
on purely synthetic data may fail to capture the complex, chaotic properties of true physical 
randomness. CryptoGAN addresses this critical gap by creating a synergistic framework where 
physical entropy provides a high-quality, unpredictable foundation, and the WGAN-GP learns to 
model, refine, and amplify this randomness, effectively filtering out statistical weaknesses. 
The primary contributions of this work are threefold: 
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1.​ A Novel Hybrid Framework: We propose and implement a unique architecture that 
integrates chaotic environmental audio as a physical entropy source with a WGAN-GP for 
robust key synthesis. This moves beyond theoretical models to a practical, end-to-end 
system. 

2.​ Comprehensive Empirical Validation: The generated keys are subjected to a rigorous 
suite of over 13 statistical, entropy, and cryptanalytic tests, providing a thorough and 
multi-faceted assessment of their quality and security that surpasses standard validation 
approaches. 

3.​ An Open-Source and Portable System: We provide an open-source implementation of 
CryptoGAN, delivering a reusable and accessible tool for researchers and practitioners to 
generate high-entropy cryptographic keys for a wide range of applications, thereby 
promoting transparency and reproducibility. 

 
2. Materials and Methods 
 

The proposed CryptoGAN framework integrates chaotic physical entropy sources with 
adversarial learning to generate high-entropy cryptographic keys. The system was implemented in 
Python 3.11 using PyTorch, NumPy, SciPy, and Cryptography libraries.The entire process is shown 
in Figure 1. 

 

Figure 1. Entire CryptoGAN Pipeline 

2.1. Chaotic Entropy Extraction 
Environmental audio files (e.g., rain.wav, traffic.wav) were used as physical entropy sources. 

Each audio stream was segmented into fixed-length windows of 1024 samples and hashed using 
the SHA-256 algorithm to generate 256-bit entropy vectors. Hashing serves a dual purpose: it 
condenses the chaotic information into a fixed-size output and removes potential biases present in 
the raw audio, resulting in a uniform distribution of bits that forms the real entropy dataset for 
training the adversarial network. 
2.2. Adversarial Key Generator (WGAN-GP) 

A WGAN-GP was implemented with a 3-layer MLP for both the Generator and Discriminator, 
as depicted in Figure 2. 

2.2.1. Model Rationale 
WGAN-GP was selected over standard GANs to prevent training failures like mode collapse 

and vanishing gradients. It stabilizes training by pairing the Wasserstein distance loss function with 
a gradient penalty (enforcing the Lipschitz constraint), which produces higher-quality, more 
diverse outputs. 

2.2.2. Network Architecture 
The Generator learns to map a 256-dimensional latent vector (sampled from a normal 

distribution) to a 256-bit synthetic entropy vector. The Discriminator (or critic) learns to 
differentiate between the real entropy vectors from the audio source and the synthetic ones from 
the Generator. The model was trained up to 1000 epochs employing batch size of 32, along with 
the  learning rate of 1e-4, and a gradient penalty λ = 10. 
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Figure 2. WGAN-GP Architecture 

2.3. Binary Key Sampling 
The generator's continuous floating-point outputs are thresholded at zero to produce 256-bit 

binary keys. For practical cryptographic use, the seeds are scaled using an HMAC-based 
Extract-and-Expand Key Derivation Function (HKDF) with the SHA-256 hash function.. This 
two-phase process is critical for security: the 'extract' phase concentrates the entropy of the input 
seed into a fixed-length pseudorandom key (PRK), and the 'expand' phase uses this PRK to 
generate a longer, cryptographically strong key of 1,000,000 bits. 

 

Figure 3. Binary Key Sampling and Validation Process 

This method ensures that the final key has high entropy distributed uniformly across its entire 
length and is resistant to attacks even if the initial seed has minor, undiscovered biases. [14] The 
final keys were exported in multiple formats for portability (binary, NumPy, Base64, hex, and QR 
code). 
2.4. Key Expansion with HKDF 

Although the GAN generates a secure 256-bit seed key, many protocols require longer keys. We 
need to scale that seed key to make it usable across a wider variety of applications. 

 
To accomplish this, we use the HMAC-based Key Derivation Function (HKDF), which is 

standardized in RFC 5869 [14]. HKDF is a function specifically designed to take initial keying 
material (our 256-bit seed) and safely transform it into one or more new, cryptographically strong 
secret keys of the required length. 
This HKDF process contains two stages: 

1.​ Extract: In the initial stage, HKDF takes the 256-bit seed key from the GAN and a salt 
(which can be a random value or an empty string) and applies the HMAC-SHA256 
function. This "extract" phase concentrates the entropy of the input keying material into a 
fixed-length pseudorandom key (PRK). This step is crucial as it ensures that even if the 
input seed has some minor statistical weaknesses, the resulting PRK will be a 
high-entropy key. 

2.​ Expand: In the second stage, the PRK is used to generate a longer output key of the 
desired length (in this case, 1 Mbit). The "expand" phase repeatedly applies the 
HMAC-SHA256 function to the PRK and a changing context-specific info string to 
produce multiple blocks of output, which are then concatenated to form the final 1 Mbit 
key. 
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This two-phase process ensures that the final key is not only long but also preserves the entropy 
and pseudorandomness of the initial seed, making it resistant to various cryptanalytic attacks, 
including those based on partial key recovery. The key expansion process is depicted in Figure 4. 

 

Figure 4. Key Expansion (HKDF) Process 

2.5. Evaluation and Testing 
The CryptoGAN system was implemented in Python 3.11, leveraging several key libraries. The 

WGAN-GP model was built and trained using PyTorch, a powerful deep learning framework. 
Numerical operations and data manipulation were handled by NumPy and SciPy. The 
cryptographic operations, specifically the SHA-256 hashing and the HKDF expansion, were 
performed using the cryptography library, which provides robust and standardized implementations 
of cryptographic primitives. 

The generated 1 Mbit keys were subjected to a comprehensive evaluation pipeline consisting of 
three classes of tests: 

1.​ Statistical Tests: (Monobit, Chi-Square, Runs, Maurer’s Universal, Spectral) to detect 
simple statistical defects and non-random patterns. 

2.​ Entropy Tests: (Shannon, Min-entropy, Collision, Sample, Permutation, Markov) to 
quantify the level of unpredictability and randomness from an information-theoretic 
perspective. 

3.​ Cryptanalytic Resistance Checks: (Seed–key correlation, Key Invertibility, Mutual 
Information) to assess the key's resilience against specific inference and modeling attacks. 

A generated key is considered cryptographically secure only upon the successful passage of this 
entire suite of tests, confirming both its statistical randomness and its resilience to cryptanalytic 
inference. 
 
3. Results and Discussion 
 

The CryptoGAN framework was evaluated by generating and validating cryptographic keys 
derived from chaotic environmental audio. The quantitative performance evaluation confirms that 
the system consistently produces high-quality cryptographic keys. The final Shannon entropy of 
approximately 0.9996 indicates near-ideal randomness, suggesting that each bit in the sequence 
carries the maximum possible amount of information. 

The statistical tests, detailed in Table 1, all yielded high p-values (>> 0.01), failing to reject the 
null hypothesis of randomness. This demonstrates that the generated bitstreams are free from 
simple statistical biases and are indistinguishable from true random sequences. 

Table 1. Statistical Tests 

Test Description Result (p-value) 

Monobit Test Balance of 0s and 1s 0.5123 

Chi-Square Test Uniformity of bits 0.4991 

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 9 2025

ISSN NO : 0363-8057

PAGE NO: 250



Test Description Result (p-value) 

Runs Test Randomness of sequences 0.5034 

Maurer’s Universal Pattern detection 0.6729 

Spectral Entropy Frequency randomness 0.4877 

The entropy metrics in Table 2 further support this, with high values for Min-entropy and Collision 
entropy confirming unpredictability even under worst-case assumptions. 

Table 2. Entropy-Based Evaluation 

Test Description Result (bits) 

Shannon Entropy Avg. info per bit 0.9996 

Min Entropy Worst-case predictability 0.9991 

Collision Entropy Repetition likelihood 0.9994 

Sample Entropy Complexity 0.9852 

Permutation Entropy Temporal structure 2.8715 

Markov Entropy Transition probabilities 1.9998 

The cryptanalytic tests shown in Table 3 confirm the system's security. The negligible seed-key 
correlation (-0.0012) and low mutual information (0.0031) indicate that the relationship between 
the initial seed and the final key is obscured, preventing inference attacks. The high mean squared 
error (1.054) for key invertibility suggests that it is computationally infeasible to reverse-engineer 
the latent vector from a given key output, demonstrating robustness against model inversion 
attacks. 

Table 3. Cryptanalytic Resistance 

Test Description Result 

Seed-Key Correlation Correlation check -0.0012 

Key Invertibility Latent recovery 1.054 

Mutual Information (MINE) Dependency check 0.0031 

 
4. Conclusion 
 

This paper presented CryptoGAN, a GAN-based cryptographic key generation framework that 
combines chaotic environmental audio entropy with adversarial learning. Experimental results 
confirmed that the generated keys achieved near-ideal entropy (Shannon entropy ≈ 0.9996) and 
passed a suite of over 13 statistical, entropy-based, and cryptanalytic resistance tests. These results 
validate CryptoGAN as a robust, lightweight, and portable solution for secure key generation, 
particularly in environments where hardware-based TRNGs are unavailable or 
resource-constrained. Future work will explore hardware acceleration on FPGA/ASIC platforms, 
the design of lightweight models for IoT deployment, extension to decentralized systems for 
blockchain protocols, and the incorporation of post-quantum cryptographic resistance tests. 
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