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Abstract: This paper presents a lightweight, modular pipeline for producing highly useful
synthetic tabular data with formal differential privacy guarantees. Existing anonymization
and synthetic data solutions often fail to prevent leakage or require complex deep learning
frameworks, making them impractical for many real-world applications. Our method
combines private dimensionality reduction through a noisy PCA sketch with class-wise
Gaussian synthesis and private model evaluation, achieving strong privacy guarantees
while maintaining downstream classification performance. The proposed system operates
efficiently on small datasets and standard computing environments without the need for
GPUs or complex tuning. Extensive experiments on benchmark datasets (Diabetes, Breast
Cancer, Wine, Iris, Digits, Linnerud) show that our pipeline produces synthetic data with
zero record leakage, robust utility (Fl-score > 0.7), and strong resistance to privacy
attacks. This work provides a practical solution for secure data sharing and machine
learning on sensitive tabular datasets.
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1. Introduction

In the era of data-driven decision-making, the ability to share and utilize sensitive
tabular datasets such as healthcare records, financial transactions, or census surveys raises
significant privacy concerns. Standard methods for anonymizing data have repeatedly
failed to protect personal information, still allowing individuals to be re-identified or their
private data to be exposed. Differential Privacy is now accepted as the top standard for
rigorous privacy protection, offering strong theoretical guarantees that any individual's
data has negligible influence on the final output. Most real-world applications of
Differential Privacy (DP) are overly complex, expensive, and generally not open for
public use or research. Furthermore, the public DP tools that do exist—especially those
using deep learning frameworks like GANs—demand specialized expertise in privacy
mathematics and powerful, costly computers.

This complexity makes these tools inaccessible to small organizations or academic
researchers who need to work with tabular data.
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To solve this, our research proposes a new, lightweight, and flexible pipeline created
specifically for tabular datasets. Our system provides a complete end-to-end method for
training models, generating synthetic data, and evaluating the results, all while ensuring
strong privacy. Unlike solutions that rely on deep learning, our pipeline is fast, efficient
with memory, and requires very little tuning.. This work aims to democratize private data
synthesis by offering a reproducible, auditable, and plug-and-play framework that fills a
critical gap in real-world differential privacy applications for tabular machine learning. A
top-level perspective of this pipeline is presented in Figure 1.
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Figure 1. Pipeline of Differentially Private Synthetic Data Generation
2. Materials and Methods

The proposed methodology follows a structured, three-stage pipeline that combines
differential privacy techniques with statistical modeling to generate high-utility synthetic
data. Each step is designed to balance formal privacy guarantees with the preservation of
data utility for downstream machine learning tasks.

2.1. Datasets

The proposed pipeline was evaluated on six standard tabular datasets from the
scikit-learn Python library. For multiclass datasets, the problem was converted to a binary
classification task by comparing class 0 against all other classes. All feature data was
normalized to a [0, 1] range using MinMaxScaler. A summary of the datasets is provided

in Table 1.
Table 1. Experimental Datasets
Dataset Samples Features Classes Task Type
Diabetes 442 10 2 Binary
Breast Cancer | 569 30 2 Binary
Wine 178 13 3 (— binary) Binary
Iris 150 4 3 (— binary) Binary
Digits 1797 64 10 (— binary) | Binary
Linnerud 20 3 Regression Binary
(— binary)
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2.2. Methodology

The pipeline is composed of three primary stages, each contributing to the overall
privacy budget (¢).

2.2.1. Private Dimensionality Reduction (DP-PCA)

High-dimensional data can exacerbate the noise required to achieve differential
privacy, thereby reducing data utility. To mitigate this, the input tabular data is first
projected to a lower-dimensional space using a differentially private Principal Component
Analysis (PCA) mechanism, a technique explored in several studies [6, 7]. Prior to
computing the principal components, verified Gaussian noise is inserted into the data's
mean vector and covariance matrix to guarantee e-differential privacy. This perturbation
ensures that the resulting projection does not reveal sensitive information about any single
individual in the dataset. This step effectively reduces data dimensionality while
preserving the most significant data variance under a formal privacy guarantee.

){ Calculate Mean H Add Gaussian Noise };
Input High- Compute Principal Output:
Dimensional Data Components Low-Dimensional Data
>{ Cach}lale H Add Gaussian Noise }7
Covariance

Figure 2. Private Dimensionality Reduction (DP-PCA) Stage

2.2.2. Class-Conditional Synthetic Data Generation (DP Gaussian)

After reducing the data's dimensions, we train a generative model.Rather than
modeling the entire dataset at once, our approach fits a separate private Gaussian
distribution for each data class. This method better preserves the unique statistical
properties of each class, which is critical for accurate classification.Privacy is enforced by
adding calibrated noise to the statistical parameters (mean and covariance) of each
class-specific distribution. New synthetic samples are then drawn from each class model,
matching the original class proportions. Finally, an inverse PCA transformation maps this
new data back into the original feature space.

Fit Gaussian Model
Input Low-Dim Data ——f¢r each Class——> +
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Figure 3. DP Gaussian Synthesis

2.2.3. Evaluation and Privacy Audit

We perform a comprehensive evaluation to assess both data utility and privacy.Utility
is measured in two ways: first, using a private logistic regression model, and second,
using the TSTR (Train-on-Synthetic, Test-on-Real) protocol with a standard
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classifier.Privacy is rigorously audited using two checks: an exact-match audit to ensure
no records were copied, and a nearest-neighbor distance analysis to quantify the
separation between synthetic and real data.This dual framework provides a reliable
method for assessing the privacy-utility trade-off, which is the central challenge in this

field. [11, 13].
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Figure 4. Evaluation and Privacy Audit
3. Results and Discussion

The total privacy budget for these experiments was €=3.28. The sum of the privacy
costs from the three various stages—PCA (e=0.63), the generator(e=1.79), and the
classifier (e=0.86)—was the overall budget. This overall budget value gives a robust
privacy guarantee.

3.1. Evaluation Metrics

Here are the both utility and privacy metrics to provide the comprehensive assessment.
1) Utility Metrics:
a) F1 Score (F1): This gives the F1 score of a private classifier after it has
been trained and evaluated on synthetic data.
b) ACC (Accuracy): This shows how accurate the private classifier is.
c) TSTR_F1: This is the F1 score for a non-private classifier trained on
synthetic data and tested on real data.
d) TSTR_AUC: This calculates the Area Under the Curve (AUC) for the
TSTR protocol's identical non-private classifier.
2) Privacy Metrics:
a) ¢&: This is the maximum procedural privacy cost.
b) Risk: This shows the optimal (safest) score, indicating an attacker cannot
successfully identify a person.
c) Dist: This determines the average distance between each synthetic point
and its closest neighbor in real data.
d) Leak: It indicates the percentage of artificial data points that closely
match actual data.
3.2. Results Summary

Table 2 summarizes the results after we executed the pipeline across all six datasets.

Table 2. Summary of Privacy and Utility Results

Dataset | ¢ F1 ACC | TSTR_F [ TSTR_AUC | Risk | Dist | Leak
1

Diabetes | 3.2 | 0.754 | 0.774 0.7350 0.8591 0.000 | 0.212 | 0.000
8 1 4 0 4 0
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Breast 321 0937 | 0924 0.9208 0.9861 0.000 | 0.187 | 0.000
8 2 0 0 4 0

Wine 3.2 | 0.666 | 0.833 0.9143 0.9769 0.000 [ 0.290 | 0.000
8 7 3 0 9 0

Iris 32| 0967 | 0.977 1.0000 1.0000 0.000 [ 0.086 | 0.000
8 7 8 0 7 0

Digits 3.2 |1 0961 | 0.992 0.9623 0.9996 0.000 [ 0.447 | 0.000
8 5 6 0 2 0

Linnerud | 3.2 [ 0.857 | 0.833 0.6667 0.6667 0.000 | 0.243 | 0.000
8 1 3 0 7 0

3.2. Results Summary

The experimental results confirm a successful balance between strong privacy and high
data utility.Across all datasets, the system achieved perfect privacy scores: zero data
leakage (Leak = 0.0) and zero membership inference risk (Risk = 0.0). This confirms the
synthetic data is safe for sharing.For utility, the synthetic data was highly effective for
machine learning, achieving exceptionally high TSTR_F1 and TSTR AUC scores. The
system reached perfect scores on the Iris dataset (TSTR_F1=1.0) and near-perfect scores
on the Digits dataset (TSTR_F1=0.9623, TSTR _AUC=0.9996). This proves the synthetic
data retained the essential statistical properties of the original datasets.
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Figure 5. TSTR_F1 Scores (utility) Across All Six Datasets

The model demonstrated strong utility even on complex datasets like Breast Cancer
(TSTR_F1: 0.9208) and Diabetes (TSTR_F1: 0.7350), proving its effectiveness for
real-world scenarios.Crucially, the system generalized robustly across diverse datasets
with varying features and sizes, requiring no dataset-specific tuning. This highlights the
advantage of our lightweight, non-parametric approach over complex deep learning
models that demand extensive hyperparameter optimization..
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4. Conclusion

This work introduces a lightweight pipeline designed to create differentially private
synthetic tabular data.Our system combines private PCA with a Gaussian synthesizer,
avoiding complex deep learning and heavy computation. This approach makes it efficient
and ideal for environments with limited resources.Evaluations across six datasets confirm
the solution provides both perfect privacy (zero membership risk and zero data leakage)
and exceptionally high utility (TSTR\ F1 scores up to 1.0). This project delivers a
practical, efficient, and reproducible method for secure data sharing.
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