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Abstract: This paper presents a lightweight, modular pipeline for producing highly useful 
synthetic tabular data with formal differential privacy guarantees. Existing anonymization 
and synthetic data solutions often fail to prevent leakage or require complex deep learning 
frameworks, making them impractical for many real-world applications. Our method 
combines private dimensionality reduction through a noisy PCA sketch with class-wise 
Gaussian synthesis and private model evaluation, achieving strong privacy guarantees 
while maintaining downstream classification performance. The proposed system operates 
efficiently on small datasets and standard computing environments without the need for 
GPUs or complex tuning. Extensive experiments on benchmark datasets (Diabetes, Breast 
Cancer, Wine, Iris, Digits, Linnerud) show that our pipeline produces synthetic data with 
zero record leakage, robust utility (F1-score ≥ 0.7), and strong resistance to privacy 
attacks. This work provides a practical solution for secure data sharing and machine 
learning on sensitive tabular datasets. 
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1. Introduction 

In the era of data-driven decision-making, the ability to share and utilize sensitive 
tabular datasets such as healthcare records, financial transactions, or census surveys raises 
significant privacy concerns. Standard methods for anonymizing data have repeatedly 
failed to protect personal information, still allowing individuals to be re-identified or their 
private data to be exposed. Differential Privacy is now accepted as the top standard for 
rigorous privacy protection, offering strong theoretical guarantees that any individual's 
data has negligible influence on the final output. Most real-world applications of 
Differential Privacy (DP) are overly complex, expensive, and generally not open for 
public use or research. Furthermore, the public DP tools that do exist—especially those 
using deep learning frameworks like GANs—demand specialized expertise in privacy 
mathematics and powerful, costly computers. 

 
This complexity makes these tools inaccessible to small organizations or academic 

researchers who need to work with tabular data. 
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To solve this, our research proposes a new, lightweight, and flexible pipeline created 
specifically for tabular datasets. Our system provides a complete end-to-end method for 
training models, generating synthetic data, and evaluating the results, all while ensuring 
strong privacy. Unlike solutions that rely on deep learning, our pipeline is fast, efficient 
with memory, and requires very little tuning.. This work aims to democratize private data 
synthesis by offering a reproducible, auditable, and plug-and-play framework that fills a 
critical gap in real-world differential privacy applications for tabular machine learning. A 
top-level perspective of this pipeline is presented in Figure 1. 

 

Figure 1. Pipeline of Differentially Private Synthetic Data Generation 

2. Materials and Methods 

The proposed methodology follows a structured, three-stage pipeline that combines 
differential privacy techniques with statistical modeling to generate high-utility synthetic 
data. Each step is designed to balance formal privacy guarantees with the preservation of 
data utility for downstream machine learning tasks. 
2.1. Datasets 

The proposed pipeline was evaluated on six standard tabular datasets from the 
scikit-learn Python library. For multiclass datasets, the problem was converted to a binary 
classification task by comparing class 0 against all other classes. All feature data was 
normalized to a [0, 1] range using MinMaxScaler. A summary of the datasets is provided 
in Table 1. 

Table 1. Experimental Datasets 

Dataset Samples Features  Classes  Task Type 

Diabetes 442  10 2 Binary 

Breast Cancer 569 30 2 Binary 

Wine 178 13 3 (→ binary) Binary 

Iris 150 4 3 (→ binary) Binary 

Digits 1797  64 10 (→ binary) Binary 

Linnerud 20 3 Regression  
(→ binary) 

Binary 
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2.2. Methodology 
The pipeline is composed of three primary stages, each contributing to the overall 

privacy budget (ε). 
2.2.1. Private Dimensionality Reduction (DP-PCA) 

High-dimensional data can exacerbate the noise required to achieve differential 
privacy, thereby reducing data utility. To mitigate this, the input tabular data is first 
projected to a lower-dimensional space using a differentially private Principal Component 
Analysis (PCA) mechanism, a technique explored in several studies [6, 7]. Prior to 
computing the principal components, verified Gaussian noise is inserted into the data's 
mean vector and covariance matrix to guarantee ε-differential privacy. This perturbation 
ensures that the resulting projection does not reveal sensitive information about any single 
individual in the dataset. This step effectively reduces data dimensionality while 
preserving the most significant data variance under a formal privacy guarantee. 

 

Figure 2. Private Dimensionality Reduction (DP-PCA) Stage 

2.2.2. Class-Conditional Synthetic Data Generation (DP Gaussian) 
After reducing the data's dimensions, we train a generative model.Rather than 

modeling the entire dataset at once, our approach fits a separate private Gaussian 
distribution for each data class. This method better preserves the unique statistical 
properties of each class, which is critical for accurate classification.Privacy is enforced by 
adding calibrated noise to the statistical parameters (mean and covariance) of each 
class-specific distribution. New synthetic samples are then drawn from each class model, 
matching the original class proportions. Finally, an inverse PCA transformation maps this 
new data back into the original feature space. 

 

Figure 3. DP Gaussian Synthesis 

2.2.3. Evaluation and Privacy Audit 
We perform a comprehensive evaluation to assess both data utility and privacy.Utility 

is measured in two ways: first, using a private logistic regression model, and second, 
using the TSTR (Train-on-Synthetic, Test-on-Real) protocol with a standard 
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classifier.Privacy is rigorously audited using two checks: an exact-match audit to ensure 
no records were copied, and a nearest-neighbor distance analysis to quantify the 
separation between synthetic and real data.This dual framework provides a reliable 
method for assessing the privacy-utility trade-off, which is the central challenge in this 
field. [11, 13]. 

 

Figure 4.  Evaluation and Privacy Audit 

3. Results and Discussion 

The total privacy budget for these experiments was ε=3.28.  The sum of the privacy 
costs from the three various stages—PCA (ε=0.63), the generator(ε=1.79), and the 
classifier (ε=0.86)—was the overall budget.  This overall budget value gives a robust 
privacy guarantee. 
3.1. Evaluation Metrics 

Here are the both utility and privacy metrics to provide the comprehensive assessment. 
1)​ Utility Metrics: 

a)​ F1 Score (F1): This gives the F1 score of a private classifier after it has 
been trained and evaluated on synthetic data. 

b)​ ACC (Accuracy): This shows how accurate the private classifier is. 
c)​ TSTR_F1: This is the F1 score for a non-private classifier trained on 

synthetic data and tested on real data. 
d)​ TSTR_AUC: This calculates the Area Under the Curve (AUC) for the 

TSTR protocol's identical non-private classifier. 
2)​ Privacy Metrics: 

a)​ ε: This is the maximum procedural privacy cost. 
b)​ Risk: This shows the optimal (safest) score, indicating an attacker cannot 

successfully identify a person. 
c)​ Dist:  This determines the average distance between each synthetic point 

and its closest neighbor in real data. 
d)​ Leak: It indicates the percentage of artificial data points that closely 

match actual data. 
3.2. Results Summary 

Table 2 summarizes the results after we executed the pipeline across all six datasets. 

Table 2. Summary of Privacy and Utility Results 

Dataset ε F1 ACC TSTR_F
1 

TSTR_AUC Risk Dist Leak 

Diabetes 3.2
8 

0.754
1 

0.774
4 

0.7350 0.8591 0.000
0 

0.212
4 

0.000
0 
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Breast 3.2
8 

0.937
2 

0.924
0 

0.9208 0.9861 0.000
0 

0.187
4 

0.000
0 

Wine 3.2
8 

0.666
7 

0.833
3 

0.9143 0.9769 0.000
0 

0.290
9 

0.000
0 

Iris 3.2
8 

0.967
7 

0.977
8 

1.0000 1.0000 0.000
0 

0.086
7 

0.000
0 

Digits 3.2
8 

0.961
5 

0.992
6 

0.9623 0.9996 0.000
0 

0.447
2 

0.000
0 

Linnerud 3.2
8 

0.857
1 

0.833
3 

0.6667 0.6667 0.000
0 

0.243
7 

0.000
0 

 
3.2. Results Summary 

The experimental results confirm a successful balance between strong privacy and high 
data utility.Across all datasets, the system achieved perfect privacy scores: zero data 
leakage (Leak = 0.0) and zero membership inference risk (Risk = 0.0). This confirms the 
synthetic data is safe for sharing.For utility, the synthetic data was highly effective for 
machine learning, achieving exceptionally high TSTR_F1 and TSTR_AUC scores. The 
system reached perfect scores on the Iris dataset (TSTR_F1=1.0) and near-perfect scores 
on the Digits dataset (TSTR_F1=0.9623, TSTR_AUC=0.9996). This proves the synthetic 
data retained the essential statistical properties of the original datasets. 

 

Figure 5. TSTR_F1 Scores (utility) Across All Six Datasets 

The model demonstrated strong utility even on complex datasets like Breast Cancer 
(TSTR_F1: 0.9208) and Diabetes (TSTR_F1: 0.7350), proving its effectiveness for 
real-world scenarios.Crucially, the system generalized robustly across diverse datasets 
with varying features and sizes, requiring no dataset-specific tuning. This highlights the 
advantage of our lightweight, non-parametric approach over complex deep learning 
models that demand extensive hyperparameter optimization.. 
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4. Conclusion 

This work introduces a lightweight pipeline designed to create differentially private 
synthetic tabular data.Our system combines private PCA with a Gaussian synthesizer, 
avoiding complex deep learning and heavy computation. This approach makes it efficient 
and ideal for environments with limited resources.Evaluations across six datasets confirm 
the solution provides both perfect privacy (zero membership risk and zero data leakage) 
and exceptionally high utility (TSTR\_F1 scores up to 1.0). This project delivers a 
practical, efficient, and reproducible method for secure data sharing. 
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