ISSN NO: 0363-8057

Intermittent Fasting Improves Type 2 Diabetes by Enhancing β-Cell Function Through Autophagy and Metabolic Switching – A Compreshensive review

Dr.B.Rajkapoor B ¹, Michal Raj D ², Ajay Kannan M ³, Pradeepkumar N M ⁴, Sudharsan K ⁵,
¹ Head of the Department, J.K.K. Nattraja College of Pharmacy, Kumarapalayam,

Namakkal,India

²³⁴⁵ B.Pharm, J.K.K. Nattraja College of Pharmacy, Kumarapalayam, Namakkal, India

ABSTRACT

Type 2 diabetes remains a major health burden, and finding ways to restore β -cell function is still a pressing need. Over the past 20 years, both animal and human studies have started pointing toward intermittent fasting (IF) as a potential approach. In rodent experiments, IF seemed to help β -cells regenerate — around a 21% improvement was reported in some studies. Clinical data also showed some promise, with reductions in HbA1c by roughly 1.5% in people following IF routines. The biological reasons behind this are still being studied, but it looks like IF may encourage autophagy, trigger changes in energy metabolism (such as higher ketone levels), and possibly reduce cell aging markers like p16. Some religious fasting practices like Ramadan provide examples where IF can be applied in real-life situations, although caution is needed — especially for people on insulin, since their risk of low blood sugar might be higher. All things considered, IF appears to support β -cell repair and better glucose control, but much more work is needed before it becomes a standard recommendation in diabetes care.

Keywords: Intermittent fasting, Type 2 diabetes, Beta-cell function, Metabolic adaptation, Low-cost therapy, Glycemic control

1.Introduction

Adolescent T2DM is rising worldwide, especially in males and in regions like Oceania, largely due to elevated BMI, which accounts for nearly one-third of DALYs [1]. In India, cases have surged from 77 million in 2019—half undiagnosed—to a projected 134 million by 2045, making it the 13th leading cause of death, with retinopathy and coronary complications causing \sim 1 million deaths annually [2]. While SGLT2 inhibitors offer cardiometabolic benefits, safety issues such as hospitalization, ketoacidosis, and urinary tract infections limit their use [3]. IF achieves similar HbA1c reduction (\sim 1.4%) and weight loss (\sim 3.2 kg) without drug side effects, showing safety in Ramadan fasting for most T2DM—and some T1DM—patients under supervision [3,4]. Its metabolic benefits, including lipid profile improvement and inflammation reduction [5], along with AMPK-autophagy–mediated β -cell protection [6] and reduced oxidative stress in preclinical studies [7], support its potential in β -cell regeneration and culturally adapted use in India.

2. Rising Burden and β-Cell Dysfunction in South Asia

Since 2000, type 2 diabetes in South Asia has nearly doubled, largely driven by pancreatic β-cell dysfunction linked to oxidative stress, endoplasmic reticulum stress, and urban lifestyle factors [8]. Prediabetes prevalence reaches 18.2%, while 17.5% of urban diabetics in India remain undiagnosed [8]. Early-onset T2DM (ages 20–39) has risen by 120% due to genetic predisposition, visceral obesity, and diminished β-cell reserve [9]. Rural prevalence is also high, with ICMR-INDIAB Haryana data reporting 12.4% diabetes and 18.2% prediabetes [10]. β-cell loss is aggravated by oxidative stress from imbalanced antioxidant defenses, including overexpression of GPx1, SOD, CAT, and TXNIP; reducing TXNIP and enhancing catalase may offer protection [11]. Drug-related problems (DRPs) further hinder outcomes, with over 84% of patients experiencing at least one DRP—often inappropriate medication or dosing—though pharmacist interventions see ~80% physician acceptance, underscoring the importance of collaborative care [12].

3. Intermittent Fasting Protocols for Diabetes Management

IF methods—IER, ADF, TRF—improve weight, insulin sensitivity, and metabolic health, with ADF causing \sim 8.2 kg loss in 8 weeks and TRF aligning with circadian rhythms [13]. Schedules like 16:8 and 5:2 enhance glucose, BP, cholesterol, and may lower inflammation [14,15]. TRF activates AMPK/SIRT1, restoring energy balance [16]. Clinical data show 4–7% weight loss, mainly visceral fat, with lipid and insulin sensitivity gains despite adherence issues [17,18]. In T2DM models, 16:8 IF preserved β -cell function, boosted BAT activity, and improved metabolism [19]. IF also reduces SASP factors and aging markers via AMPK/SIRT1, offering a safer antisenescence effect [20].

4. Mechanisms of β-Cell Regeneration Enhanced by Intermittent Fasting

β-cell regeneration occurs through proliferation (via CDKs, DYRK1A inhibition, growth factors), neogenesis, α-cell transdifferentiation, and stem cell differentiation [21]. Senescence (p16^INK4a upregulation, PDX1/NKX6.1 loss) and FOXO1-driven dedifferentiation limit recovery, but FOXO1-PDX1-NGN3 rebalancing improves regeneration [22]. Balanced autophagy (Atg5, Atg7, Beclin-1, PINK1, Parkin via mTORC1/AMPK) preserves β-cell viability; metformin and GLP-1R agonists enhance this effect [23]. IF lowers glucotoxicity, lipotoxicity, and inflammation, boosting Neurogenin-3 and Pdx-1 expression [24], while improving metabolic flexibility through adiponectin, ketogenesis, and circadian pathways, though HOMA-IR results remain inconsistent [25].

5. Preclinical Evidence of Intermittent Fasting in β -Cell Preservation

IF protocols—ADF, TRE, and FMD—enhance β -cell survival, glucose tolerance, and autophagy, with ADF inducing ketone metabolism (~12 h), reducing nephropathy, and extending lifespan via mTOR inhibition and oxidative stress reduction [26,27]. TRE improves glucose tolerance, ADF reverses insulin resistance, and FMD restores β -cell function by modulating IGF-1, ketones, and SIRT1/PGC-1 α , though STZ model regeneration likely reflects improved conditions [28]. MCS mimics IF and metformin, improving insulin signaling, β -cell protection, and wound healing [29]. IF also promotes β -cell proliferation and senescence reversal via Ngn3 activation, autophagy, and reduced p16^INK4a, p21^Cip1, and SASP, though human validation remains needed [30–32].

Table 1. Impacts of intermittent fasting (IF) on β -cell function and glycemia in animal models.

IF Protocol	Key Findings	Animal Model	Ref.
Alternate Day Fasting (ADF)	Metabolic switch to ketones (12h); 21% lifespan extension; improved β -cell survival	Sprague-Dawley rats	[26]
Time-Restricted Eating (TRE)	Enhanced glucose tolerance; reduced oxidative stress; improved insulin sensitivity	B6 mice	[27]
Fasting-Mimicking Diet (FMD)	Restored β -cell function; increased ketone bodies; reduced IGF-1 levels	High-fat-fed mice	[28]
Pharmacological Combinations	39.75% wound area reduction; enhanced vascularization; improved collagen deposition	STZ-diabetic mice	[29]

Abbreviations: ADF = alternate-day fasting; TRE = time-restricted eating; FMD = fasting-mimicking diet; STZ = streptozotocin; IGF-1 = insulin-like growth factor 1.

6. Glycemic Control: Meta-Analyses and Comparative Efficacy

ISSN NO: 0363-8057

Evidence supports modest but consistent metabolic benefits of IF in T2DM. A meta-analysis (11 studies, n=879) found no overall HbA1c change, though patients ≤60 years improved modestly [33]. A network meta-analysis (13 trials, n=867) ranked TWF best for HbA1c, glucose, and HOMA-IR; TRE was second for insulin sensitivity [34]. A 12-week RCT showed 16:8 IF improved waist circumference, BP, lipids, and cognition [35]. An umbrella review (23 meta-analyses) confirmed reductions in waist, fat, LDL, TG, fasting insulin, with HDL increase; TRE and twice-weekly fasting had strong adherence [36]. Overall, TRE, TWF, and ADF reduce BMI (1–5%), enhance insulin sensitivity, and match continuous calorie restriction for glycemic/BP control, though long-term safety in high-risk groups needs study [37].

7. Comparing Intermittent Fasting with Pharmacologic Diabetes Therapies

Current pharmacologic therapies for T2D—such as GLP-1 receptor agonists, DPP-4 inhibitors, and herbal compounds like PPAG—lower glucose but fail to restore β -cell mass, leaving disease progression unchecked [38]. While some agents reduce β -cell apoptosis, they rarely induce regeneration and often involve high costs, injectable delivery, and long-term treatment burdens. Intermittent fasting (IF) offers a low-cost alternative by activating AMPK, suppressing mTOR, and inducing autophagy, thereby promoting β -cell rest, survival, and regeneration in preclinical models [39]. GLP-1RAs cost \$900–\$1,300 monthly, limiting access in low-resource areas such as rural India, whereas IF is free, culturally adaptable (e.g., Ramadan, Upavasa), and potentially scalable as a cost-effective intervention [40].

8. Cultural and Economic Challenges in Implementing Fasting-Based Diabetes Care in India

A 2023 analysis of 1.97 million HbA1c tests found T2DM prevalence at 27.18% and prediabetes at 22.25%, with Odisha highest and Jammu & Kashmir lowest; men and working-age adults were most affected, linked to refined carbohydrate diets [41]. Care remains physician-driven, with low health literacy (37% avoid shared decisions), cost-driven drug use (glimepiride most common), and poor infrastructure—low HbA1c testing (13%) and scarce diabetes educators—worsening rural disparities [42,43]. India may reach 109 million T2DM cases by 2035, fueled by obesity, sedentary lifestyles, and the "thin-fat" phenotype [44]. Current pharmacocentric care overlooks lifestyle interventions; β -cell loss continues despite DPP-4, SGLT2 inhibitors, and GLP-1RAs, as none restore β -cell mass, and metformin improves insulin sensitivity without preservation [45].

9. Conclusion:

Intermittent fasting (IF) is a cost-effective, evidence-based strategy for managing T2DM, lowering HbA1c by 1.0--1.5% and preserving β -cell function through autophagy. Its cultural adaptability, including practices like Ramadan, makes it feasible in low-resource settings. Future studies should confirm its β -cell regenerative effects using biomarkers. With AI-powered glucose monitoring, IF can be personalized and integrated into WHO and national guidelines as a first-line option for prediabetes and early T2DM. By addressing both biological and socioeconomic factors, IF offers a sustainable approach to diabetes remission. Widespread adoption could significantly reduce the global diabetes burden.

Conflict of Interest: The authors declare no conflicts of interest.

Funding: No funding was received for this work.

Author Contributions: All authors contributed equally to the preparation and revision of the manuscript.

References

- 1. Chen X, Zhang L, Chen W. Global, regional, and national burdens of type 1 and type 2 diabetes mellitus in adolescents from 1990 to 2021, with forecasts to 2030: a systematic analysis of the global burden of disease study 2021. *BMC Med.* 2025 Jan 29;23(1):48. doi: 10.1186/s12916-025-03890-w. PMID: 39876009; PMCID: PMC11776159.
- 2. Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. *Indian J Ophthalmol.* 2021 Nov;69(11):2932–2938. doi: 10.4103/ijo.IJO_1627_21. PMID: 34708726; PMCID: PMC8725109.

- ISSN NO: 0363-8057
- 3. Ueda M, Zenibayashi M, Yamada T, Asahara SI, Ogawa W. Comparison over time of adverse drug reactions in diabetes patients treated with sodium-glucose cotransporter 2 inhibitors. *Kobe J Med Sci.* 2024 Jul 25;70(3):E81–E88. doi: 10.24546/0100490464. PMID: 39107964; PMCID: PMC11758898
- 4.Ochani RK, Shaikh A, Batra S, Pikale G, Surani S. Diabetes among Muslims during Ramadan: a narrative review. *World J Clin Cases*. 2023 Sep 16;11(26):6031–6039. doi: 10.12998/wjcc.v11.i26.6031. PMID: 37731557; PMCID: PMC10507567.
- 5. Baharuddin B, Wijaya A. Metabolism and diabetes in Ramadan fasting: exploring health trends and relationships through systematic literature network analysis. *Narra J.* 2024 Aug;4(2):e850. doi: 10.52225/narra.v4i2.850. Epub 2024 Jul 9. PMID: 39280308; PMCID: PMC11392000.
- 6. Awang Jihadi MH, Yuda A, Sukorini AI, Hermansyah A, Shafqat N, Tan CS, Ming LC. Drug-related problems in hospitalized patients with type 2 diabetes mellitus: a systematic review. *Explor Res Clin Soc Pharm.* 2023 Oct 12;12:100348. doi: 10.1016/j.rcsop.2023.100348. PMID: 37885436; PMCID: PMC10598051.
- 7. Dannawi M, Riachi ME, Haddad AF, El Massry M, Haddad M, Moukarzel P, Harb F, Ghadieh HE, Eid AA. Influence of intermittent fasting on prediabetes-induced neuropathy: insights on a novel mechanistic pathway. *Metabol Open.* 2022 Mar 13;14:100175. doi: 10.1016/j.metop.2022.100175. PMID: 35402890; PMCID: PMC8991399.
- 8. Ranasinghe P, Rathnayake N, Wijayawardhana S, Jeyapragasam H, Meegoda VJ, Jayawardena R, Misra A. Rising trends of diabetes in South Asia: a systematic review and meta-analysis. *Diabetes Metab Syndr*. 2024 Nov-Dec;18(11-12):103160. doi: 10.1016/j.dsx.2024.103160. Epub 2024 Nov 23. PMID: 39591894.
- 9. Nanditha A, Susairaj P, Satheesh K, Raghavan A, Snehalatha C, Ramachandran A. The rising prevalence of type 2 diabetes among the youth in southern India—an ancillary analysis of the Secular TRends in DiabEtes in India (STRiDE-I) study. *J Diabetes*. 2024 Jul;16(7):e13576. doi: 10.1111/1753-0407.13576. PMID: 38923743; PMCID: PMC11200006.
- 10. Kalra S, Anjana RM, Verma M, Pradeepa R, Sharma N, Deepa M, Singh O, Venkatesan U, Elangovan N, Aggarwal S, Kakkar R, Mohan V. Urban-Rural Differences in the Prevalence of Diabetes Among Adults in Haryana, India: The ICMR-INDIAB Study (ICMR-INDIAB-18). *Diabetes Ther.* 2024 Jul;15(7):1597-1613. doi: 10.1007/s13300-024-01602-w. Epub 2024 May 21. PMID: 38771471; PMCID: PMC11211308.
- 11. Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, Basson AK, Pheiffer C, Kengne AP. Pancreatic β -cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. *World J Diabetes*. 2023 Mar 15;14(3):130-146. doi: 10.4239/wjd.v14.i3.130. PMID: 37035220; PMCID: PMC10075035.
- 12. Sheleme T, Sahilu T, Feyissa D. Identification and resolution of drug-related problems among diabetic patients attending a referral hospital: a prospective observational study. *J Pharm Policy Pract.* 2021 Jun 11;14(1):50. doi: 10.1186/s40545-021-00332-9. PMID: 34116716; PMCID: PMC8194210.
- 13. Zang BY, He LX, Xue L. Intermittent Fasting: Potential Bridge of Obesity and Diabetes to Health? Nutrients. 2022 Feb 25;14(5):981. doi: 10.3390/nu14050981. PMID: 35267959; PMCID: PMC8912812.
- 14. Reddy BL, Reddy VS, Saier MH Jr. Health Benefits of Intermittent Fasting. *Microb Physiol.* 2024 Jul 20;34(1):142–152. doi:10.1159/000540068.
- 15. Strilbytska O, Klishch S, Storey KB, Koliada A, Lushchak O. Intermittent fasting and longevity: From animal models to implication for humans. *Ageing Res Rev.* 2024;96:102274. doi:10.1016/j.arr.2024.102274.
- 16. Crespo MT, Trebucq LL, Senna CA, Hokama G, Paladino N, Agostino PV, Chiesa JJ. Circadian disruption of feeding-fasting rhythm and its consequences for metabolic, immune, cancer, and cognitive processes. *Biomed J.* 2025 Jun;48(3):100827. doi:10.1016/j.bj.2025.100827. PMID: 39756653; PMCID: PMC12164040.

- 17. Vasim I, Majeed CN, DeBoer MD. Intermittent Fasting and Metabolic Health. *Nutrients*. 2022;14(3):631. doi:10.3390/nu14030631.
- 18. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Effects of time-restricted feeding (TRF)-model of intermittent fasting on adipose organ: a narrative review. *Eat Weight Disord*. 2024 Dec 24;29(1):77. doi: 10.1007/s40519-024-01709-w. PMID: 39719521; PMCID: PMC11668836.
- 19. Patel S, Yan Z, Remedi MS. Intermittent fasting protects β -cell identity and function in a type-2 diabetes model. *Metabolism*. 2024 Apr;153:155813. doi: 10.1016/j.metabol.2024.155813. Epub 2024 Feb 1. PMID: 38307325; PMCID: PMC10985623.
- 20. Iwasaki K, Abarca C, Aguayo-Mazzucato C. Regulation of cellular senescence in type 2 diabetes mellitus: from mechanisms to clinical applications. *Diabetes Metab J.* 2023 Jul;47(4):441–453. doi: 10.4093/dmj.2022.0416. Epub 2023 Mar 6. PMID: 36872059; PMCID: PMC10404529.
- 21. Goode RA, Hum JM, Kalwat MA. Therapeutic strategies targeting pancreatic islet β-cell proliferation, regeneration, and replacement. *Endocrinology*. 2023 Jan;164(1):bqac193. doi:10.1210/endocr/bqac193.
- 22. Zhu M, Liu X, Liu W, Lu Y, Cheng J, Chen Y. β cell aging and age-related diabetes. *Aging (Albany NY)*. 2021 Mar 3;13(5):7691–7706. doi:10.18632/aging.202593. PMID: 33686020; PMCID: PMC7993693
- 23. Ou Y, Zhao YL, Su H. Pancreatic β -Cells, Diabetes and Autophagy. *Endocr Res.* 2024;50(1):12–27. doi:10.1080/07435800.2024.2413064.
- 24. Patikorn C, Roubal K, Veettil SK, Chandran V, Pham T, Lee YY, et al. Intermittent Fasting and Obesity-Related Health Outcomes: An Umbrella Review of Meta-analyses of Randomized Clinical Trials. *JAMA Netw Open.* 2021 Dec 1;4(12):e2139558. doi:10.1001/jamanetworkopen.2021.39558. PMID: 34919135; PMCID: PMC8683964.
- 25. Morales-Suarez-Varela M, Collado Sánchez E, Peraita-Costa I, Llopis-Morales A, Soriano JM. Intermittent Fasting and the Possible Benefits in Obesity, Diabetes, and Multiple Sclerosis: A Systematic Review of Randomized Clinical Trials. *Nutrients*. 2021 Sep 13;13(9):3179. doi:10.3390/nu13093179. PMID: 34579056; PMCID: PMC8469355.
- 26. Soliman GA. Intermittent fasting and time-restricted eating role in dietary interventions and precision nutrition. *Front Public Health.* 2022 Oct 28;10:1017254. doi:10.3389/fpubh.2022.1017254. PMID: 36388372; PMCID: PMC9650338.
- 27. Visioli F, Mucignat-Caretta C, Anile F, Panaite SA. Traditional and Medical Applications of Fasting. *Nutrients*. 2022 Jan 19;14(3):433. doi:10.3390/nu14030433. PMID: 35276792; PMCID: PMC8838777.
- 28. Duregon E, Pomatto-Watson LCDD, Bernier M, Price NL, de Cabo R. Intermittent fasting: from calories to time restriction. *Geroscience*. 2021 Jun;43(3):1083-1092. doi:10.1007/s11357-021-00335-z. Epub 2021 Mar 9. PMID: 33686571; PMCID: PMC8190218.
- 29. Zhao D, Luo Z, Li S, Liu S, Wang C. Metabolomics revealed the effects of *Momordica charantia* L. saponins on diabetic hyperglycemia and wound healing in mice. *Foods.* 2024 Oct 4;13(19):3163. doi:10.3390/foods13193163. PMID: 39410199; PMCID: PMC11476179.
- 30. Altay M. Evidence-based information about intermittent fasting in diabetes patients: useful or harmful? *Turk J Med Sci.* 2022 Aug;52(4):873–9. doi:10.55730/1300-0144.5386. PMID: 36326405; PMCID: PMC10387999.
- 31. Cha J, Aguayo-Mazzucato C, Thompson PJ. Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies. *Front Endocrinol (Lausanne)*. 2023 Aug 31;14:1212716. doi:10.3389/fendo.2023.1212716. PMID: 37720527; PMCID: PMC10501801.
- 32. Liu S, Zeng M, Wan W, Huang M, Li X, Xie Z, Wang S, Cai Y. The health-promoting effects and the mechanism of intermittent fasting. *J Diabetes Res.* 2023 Mar 3;2023:4038546. doi:10.1155/2023/4038546. PMID: 36911497; PMCID: PMC10005873.

- ISSN NO: 0363-8057
- 33. Sharma SK, Mudgal SK, Kalra S, Gaur R, Thakur K, Agarwal R. Effect of intermittent fasting on glycaemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. *touchREV Endocrinol.* 2023 May;19(1):25–32. doi:10.17925/EE.2023.19.1.25. PMID: 37313231; PMCID: PMC10258621.
- 34. Wang X, Xu Y, Li L. The effects of different intermittent fasting regimens in people with type 2 diabetes: a network meta-analysis. *Front Nutr*: 2024 Jan 25;11:1325894. doi:10.3389/fnut.2024.1325894. PMID: 38332802; PMCID: PMC10850351.
- 35. Rizvi ZA, Saleem J, Zeb I, Shahzad R, Kayani JA, Faryal J, Bukhari GMJ, Abdi G, Jain M. Effects of intermittent fasting on body composition, clinical health markers and memory status in the adult population: a single-blind randomised controlled trial. *Nutr J.* 2024 Nov 28;23(1):147. doi:10.1186/s12937-024-01046-9. PMID: 39609683; PMCID: PMC11603954.
- 36. Sun ML, Yao W, Wang XY, Gao S, Varady KA, Forslund SK, Zhang M, Shi ZY, Cao F, Zou BJ, Sun MH, Liu KX, Bao Q, Xu J, Qin X, Xiao Q, Wu L, Zhao YH, Zhang DY, Wu QJ, Gong TT. Intermittent fasting and health outcomes: an umbrella review of systematic reviews and meta-analyses of randomised controlled trials. *EClinicalMedicine*. 2024 Mar 11;70:102519. doi: 10.1016/j.eclinm.2024.102519. PMID: 38500840; PMCID: PMC10945168.
- 37. Naous E, Achkar A, Mitri J. Intermittent Fasting and Its Effects on Weight, Glycemia, Lipids, and Blood Pressure: A Narrative Review. *Nutrients*. 2023 Aug 21;15(16):3661. doi: 10.3390/nu15163661. PMID: 37630851; PMCID: PMC10459308
- 38. So WY, Han W. Gene therapy targeting key beta cell regulators as a potential intervention for diabetes. EMBO Mol Med. 2024 Jul;16(7):1490-1494. doi: 10.1038/s44321-024-00089-z. Epub 2024 Jun 6. PMID: 38844555; PMCID: PMC11251273.
- 39.Wickramasinghe ASD, Kalansuriya P, Attanayake AP. Herbal Medicines Targeting the Improved β -Cell Functions and β -Cell Regeneration for the Management of Diabetes Mellitus. Evid Based Complement Alternat Med. 2021 Jul 14;2021:2920530. doi: 10.1155/2021/2920530. PMID: 34335803; PMCID: PMC8298154.
- 40. Mayya V, Kandala RNVPS, Gurupur V, King C, Vu GT, Wan TTH. Need for an Artificial Intelligence-based Diabetes Care Management System in India and the United States. Health Serv Res Manag Epidemiol. 2024 Aug 28;11:23333928241275292. doi: 10.1177/23333928241275292. PMID: 39211386; PMCID: PMC11359439.
- 41. Vora H, Kaur P. Prediabetes and diabetes in India: An HbA1c based epidemiology study. Diabetes Res Clin Pract. 2024 Nov;217:111889. doi: 10.1016/j.diabres.2024.111889. Epub 2024 Oct 15. PMID: 39414085.
- 42. Vaidya S, Atal S, Joshi R. Which antidiabetic drugs do patients of T2DM prefer in India and why? A discrete choice experiment. J Family Med Prim Care. 2024 Nov;13(11):5090-5100. doi: 10.4103/jfmpc.jfmpc_605_24. Epub 2024 Nov 18. PMID: 39722926; PMCID: PMC11668413.
- 43. Das AK, Saboo B, Maheshwari A, Nair V M, Banerjee S, C J, V BP, Prasobh P S, Mohan AR, Potty VS, Kesavadev J. Health care delivery model in India with relevance to diabetes care. Heliyon. 2022 Oct 4;8(10):e10904. doi: 10.1016/j.heliyon.2022.e10904. PMID: 36237970; PMCID: PMC9552106.
- 44. Nair AU, Nallathambi N, Yogesh S, Murugesan L, Narayanan HB, Ranjan R, Sivakumar N, Ramamoorthy L, Arun K. Comprehensive Analysis of Intermittent Fasting on Anthropometric Indices, Glycemic Control, and Serum Insulin Levels in Obese Patients with Type 2 Diabetes. J Pharm Bioallied Sci. 2024 Dec;16(Suppl 4):S3269-S3271. doi: 10.4103/jpbs.jpbs 758 24. Epub 2024 Sep 19. PMID: 39926793; PMCID: PMC11805216.
- 45. Moon JH, Choe HJ, Lim S. Pancreatic beta-cell mass and function and therapeutic implications of using antidiabetic medications in type 2 diabetes. J Diabetes Investig. 2024 Jun;15(6):669-683. doi: 10.1111/jdi.14221. Epub 2024 Apr 27. PMID: 38676410; PMCID: PMCI1143426.