GRADE THATE THE HOURS WILL BUT AND DISSOLUTION OF ETYTH TO THE STATE OF THE STATE O

Meenakshi M 1*, Dr. Sankar C 1, Premkumar S 2, Rajesh M 3, RohithKumar C 1

¹Department of Pharmaceutics, KMCH College of Pharmacy, Kovai Estate, Kalappatti Road, India., Postal code:641048

²Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, Tamil Nadu, India.

³Department of Pharmaceutical Analysis, KMCH College of Pharmacy, Kovai Estate, Kalappatti Road, India., Postal code:641048

ABSTRACT:

Erythromycin stearate remains an important macrolide antibiotic, but its poor aqueous solubility and acid lability limit its oral bioavailability and therapeutic effectiveness. This review critically examines recent advancements in formulation technologies aimed at enhancing the solubility and dissolution of erythromycin stearate in tablet dosage forms. Approaches such as particle size reduction, cyclodextrin complexation, lipid-based systems, solid dispersions, salt and co-crystal formation, and nanoparticle drug delivery have shown significant promise in improving drug wettability and gastrointestinal absorption. The review emphasizes the necessity of careful excipient selection and the use of protective coatings to safeguard erythromycin stearate from hydrolysis and degradation during manufacturing and storage. Regulatory perspectives are discussed, highlighting the importance of ICH stability guideline compliance, toxicological evaluation of new excipients and solubilizing agents, and the need for comprehensive stability data in regulatory submissions. Recent patented innovations illustrate the integration of multiple strategies, offering synergistic improvements in both solubility and stability. Ultimately, optimizing drug formulation through a multidisciplinary approach that balances solubility enhancement with chemical and physical stability, safety, and regulatory standards is pivotal for improved clinical efficacy and patient outcomes.

Keywords: Erythromycin stearate, solubility enhancement, dissolution improvement, tablet formulation, solid dispersion, nanoparticle drug delivery, pharmacopeial standards.

1.INTRODUCTION:

Erythromycin stearate, a macrolide antibiotic commonly employed to combat infections by Gram-positive bacteria such as Staphylococcus and Streptococcus, faces limitations in its therapeutic effectiveness due to its low water solubility, which results in poor oral absorption and inconsistent clinical outcomes.¹ A major *challenge* is instability in acidic gastric conditions; erythromycin stearate dissolves and decomposes in acids, causing rapid inactivation of the drug in the stomach and thus reduced systemic absorption.^{2,3,4} Low dissolution rate in gastrointestinal fluids further restricts its absorption, with studies showing conventional tablet forms release insufficient drug amounts, especially in lower pH environments.

The USP guidelines require at least 75% dissolution in 2h at pH 6.8, a specification often unmet in practice.^{3,5}Attempts to protect erythromycin stearate from gastric acid, for example via enteric coating, are complicated by its even lower solubility compared to erythromycin base, and enteric-coated preparations have lower absorption than base formulations.⁴Enhancing solubility and dissolution is critically important because improved rates directly correlate with increased bioavailability, more consistent plasma levels, and better therapeutic effectiveness. Techniques like solid dispersions, nanosizing, and pH-sensitive delivery systems help protect from gastric degradation and promote rapid release at intestinal pH, ensuring more reliable clinical results. ¹Therefore, research into advanced formulation strategies for erythromycin stearate, especially those focusing on solubility and dissolution enhancement, is essential for optimizing its therapeutic potential and overcoming current pharmacological limitations.^{6,3}

2.PHYSICOCHEMICAL PROPERTIES OF ERYTHROMYCIN STEARATE:

Erythromycin stearate is the stearic acid ester of erythromycin, a macrolide antibiotic. It is a large, amphiphilic molecule (C55H103NO15) comprising a 14-membered lactone ring linked to sugar moieties and the hydrophobic stearate group, which contributes to its high crystallinity and poor aqueous solubility. Though it dissolves easily in organic solvents like ethanol and dichloromethane, erythromycin stearate is nearly insoluble in water. Its hydrophobic stearate component further reduces water solubility compared to the erythromycin base, and it remains insoluble in acidic gastric fluids. 8,9

$$H_{3}C$$
 $H_{3}C$
 $H_{4}C$
 $H_{2}N$
 $H_{2}N$
 $H_{2}N$
 $H_{3}C$
 $H_{4}C$
 $H_{5}C$
 H

Figure 1.Chemical structure of erythromycin stearate illustrating the macrolide core, glycosidic sugars, and esterlinked stearic acid moiety.

This salt form is extremely labile in acidic pH, undergoing hydrolytic degradation in the stomach that causes rapid loss of drug activity and reduces the effective dose absorbed after oral administration. Studies confirm that both erythromycin and its stearate derivative are chemically unstable in gastric conditions, impacting bioavailability and therapeutic effectiveness. ^{10,11}The crystalline nature and hydrophobicity of erythromycin stearate result in a slow dissolution rate in gastrointestinal fluids. Most conventional tablet formulations fail to meet pharmacopeial requirements for dissolution (e.g., 75% in 2h at pH 6.8), and poor in vitro dissolution translates to limited *in vivo* absorption. ¹²

The combination of poor water solubility, acid lability, and incomplete dissolution complicates oral formulation. Enteric coating can help protect erythromycin stearate from gastric degradation but may further limit solubility in the intestine due to the already low aqueous solubility of the stearate form. Recent formulation research therefore focuses on approaches such as solid dispersions, pH-sensitive nanoparticles, and lipid-based delivery systems to enhance dissolution and protect the drug until it reaches the more favourable intestinal pH.¹³

3.OVERVIEW OF SOLUBILITY AND DISSOLUTION ENHANCEMENT TECHNIQUES:

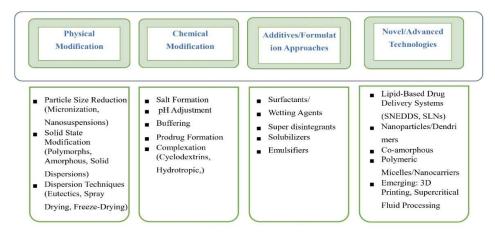


Figure 2. Classification of Solubility and Dissolution Enhancement Strategies.

Many contemporary approaches have been created to deal with the problem of poor solubility in pharmaceutical compounds a feature inherent to nearly 40% of approved drugs and up to 90% of drug candidates. 14,15 The most fundamental and widely used approaches fall into two primary categories: physical modifications and chemical techniques. Physical strategies include particle size reduction (micronization, nanonization), which increases surface area and thus accelerates dissolution rates. Nanosuspension technology and solid dispersions, often involving hydrophilic carriers, are especially notable for transforming crystalline drugs into amorphous or nano-sized states with greatly improved solubility. 16,17

Chemical modification approaches encompass salt formation for drugs amenable to ionization, as well as the use of prodrugs and inclusion complexes like cyclodextrins. These can directly modify solubility profiles by enhancing aqueous interactions or converting drugs into more soluble derivatives. The employment of surfactants and co-solvents remains standard practice, with newer advances harnessing hydrotropy, pH adjustment, and microenvironmental manipulation to optimize local solubility. ¹⁸ Emerging technologies include supercritical fluid processing, cryogenic methods, and nanotechnology-based

GRADIATAER FOR SAId lipid nanoparticles, liposomes, nano emulsions, and dendrimers), all of WANO fur 1963-8057 control over solubilization and drug release profiles. 19

The physicochemical properties of the medicine and the preferred dose form ultimately determine the approach that is taken. While no universal solution exists, the ongoing integration of traditional and advanced techniques is progressively closing the gap between drug discovery and effective oral delivery for poorly water-soluble compounds.¹⁴

4.TECHNIQUES APPLIED TO ERYTHROMYCIN STEARATE

4.1 Solid Dispersion Systems:

Solid dispersion (SD) systems are one of the most studied ways to increase the solubility and dissolution of poorly soluble drugs, such erythromycin stearate. Studies on erythromycin analogues have demonstrated that SDs can considerably increase dissolution velocity by improving surface area and converting the drug to a more soluble amorphous state. The improvement also stems from enhanced wettability of drug particles within the hydrophilic carrier matrix. However, challenges remain regarding physical stability, as amorphous forms are prone to recrystallization during storage. ¹⁹ Recent advancements include the use of polymer blends and novel carriers like Soluplus® to improve physical stability and dissolution further. ²⁰ Incorporation of surfactants in SD formulations has also synergistically improved dissolution. Overall, SDs remain a versatile and effective strategy for solubility enhancement of erythromycin stearate and similar lipophilic drugs.

4.2 Particle Size Reduction:

According to the Noyes-Whitney principle, particle size reduction is a simple and popular technique to increase the dissolving rate, where smaller particle size increases surface area exposed to solvents. ²¹ Micronization reduces particles to sizes below 10 microns, whereas nanonization further decreases size to below 100 nm, often producing nanosuspensions. ²² Nanosizing technologies, such as wet milling and high-pressure homogenization, have been used to formulate erythromycin derivatives with significantly improved dissolution rates and bioavailability. ²³ Smaller particles dissolve more rapidly due to increased surface area and enhanced enterocyte uptake. Supercritical fluid technology offers a solvent-free, scalable alternative to produce uniform nanoparticles with controlled morphology. Spray drying and freeze-drying of nanosuspensions produce dry powder formulations ideal for tablets. ²² However, challenges include particle agglomeration, physical instability, and increased surface energy potentially leading to degradation. Stabilizers like polymers or surfactants are necessary to ensure dispersion stability. Recent reviews highlight the synergistic effect of combining particle size reduction with other methods, such as solid dispersions or lipid carriers, providing improved stability with enhanced dissolution profiles. ²⁴

4.3 Use of Surfactants and Wetting Agents:

Surfactants and wetting agents improve drug dissolution primarily by reducing surface tension, enhancing wettability, and forming micelles to solubilize lipophilic drugs like erythromycin stearate. Surfactants such as sodium lauryl sulphate (SLS), Tween 80, and poloxamers are commonly incorporated into tablet formulations or pre-formed solid dispersions.²⁵ The presence of surfactants can prevent drug aggregation and promote rapid dispersion in gastrointestinal fluids. Moreover, surfactants aid in maintaining a supersaturated state of the drug once dissolved, delaying precipitation and enhancing absorption.²⁶ Wetting agents are especially important for hydrophobic drugs, promoting intimate contact with dissolution media. They are often combined with solid dispersions or nanoparticle formulations to maximize their solubilization efficiency. However, the concentration of surfactants must be optimized since excessive amounts may lead to gastrointestinal irritation and toxicity. Recent formulations utilize biocompatible surfactants to reduce side effects while maintaining efficacy.

4.4 Complexation Techniques:

Complexation with cyclodextrins (CDs) remains a potent chemical method for enhancing solubility and dissolution of lipophilic drugs. CDs form inclusion complexes by entrapping hydrophobic drug molecules in their hydrophobic cavity, improving apparent aqueous solubility and chemical stability. For erythromycin stearate, β -cyclodextrin and its derivatives (e.g., hydroxypropyl- β -cyclodextrin) have been shown to significantly enhance dissolution rates by increasing wettability and reducing crystallinity. CDs can also protect the drug from gastric degradation due to complexation. Besides CDs, newer macrocycles like calixarenes and cucurbiturils have been explored, albeit less commonly for erythromycin. Such complexation also improves drug permeability across membranes, contributing to increased bioavailability. Despite advantages, complexation efficacy depends on drug-CD stoichiometry, preparation method, and competing solvents. Recent reviews emphasize combining CD complexation with solid dispersion or nanoparticle strategies to achieve synergistic effects. Let α

4.5 Salt Formation and pH Modification:

Salt formation is an effective chemical modification for ionizable drugs, leading to enhanced water solubility and dissolution. For drugs like erythromycin stearate, which is poorly soluble and acid-labile, selection of an appropriate salt or co-former can improve solubility without compromising stability. Adjusting the microenvironmental pH within the tablet matrix using buffering agents can also enhance dissolution rates. The use of alkalizers or acidifiers ensures the drug maintains solubility during transit through variable pH environments in the GI tract. pH-sensitive polymers that modify local pH or retard dissolution until reaching favourable intestinal pH have shown promising improvements in bioavailability. For erythromycin stearate, enteric coatings combined with pH modulators help protect from gastric acid but need to balance release rate to overcome solubility limitations. ³²Recent research focuses on combining salt formation with nano or solid dispersion

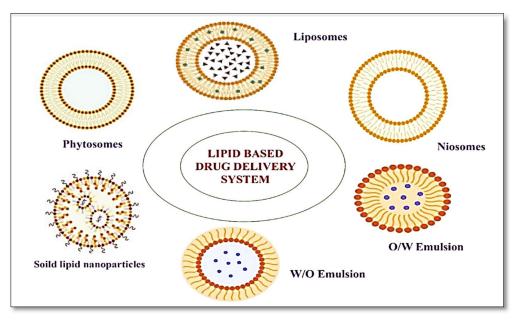


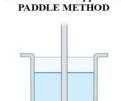
Figure. 3 Various lipid-based drug delivery systems including liposomes, niosomes, phytosomes, solid lipid nanoparticles, and oil/water emulsions, illustrating diverse structural forms used for enhanced drug delivery.

Lipid-based drug delivery systems (LBDDS), including self-nanoemulsifying drug delivery systems (SNEDDS), microemulsions, liposomes, and solid lipid nanoparticles, have gained prominence for enhancing solubility and oral absorption of lipophilic drugs such as erythromycin stearate. 33,34 These systems improve bioavailability by enhancing drug solubilization in the GI tract, promoting lymphatic transport, and protecting drugs from enzymatic degradation. SNEDDS, specifically, effortlessly create fine oil-in-water emulsions during aqueous dilution, enhancing surface area and dissolution rate. 35 Recent advances focus on using biocompatible natural oils, enhanced surfactant blends, and solidification of liquid lipid systems for better patient compliance and stability. 36 Formulations incorporating vitamin E TPGS or Gelucire 44/14 show improved solubility and reduced surfactant-induced irritation. 37 Lipid carriers can also be combined with solid dispersions or nanocrystals to obtain synergistic improvement in dissolution kinetics.

4.7 Co-crystals and Solid Solutions:

Pharmaceutical co-crystals and solid solutions offer promising approaches for modulating solubility by creating new solid phases with improved physicochemical properties without altering pharmacological activity. 38,39

Co-crystals involve drug molecules and co-formers linked by non-covalent interactions, improving dissolution by disrupting crystal lattices. Only Solid solutions yield molecular-level dispersion of drug within a carrier matrix, leading to enhanced solubility and bioavailability. Hough less explored for erythromycin stearate, these techniques are gaining traction in recent studies targeting poorly soluble antibiotics, and may overcome formulation challenges posed by the drug's crystalline nature.


4.8 Use of Super disintegrants in Tablets:

Super disintegrants that speed up tablet disintegration, including sodium starch glycolate, crospovidone, and croscarmellose sodium, indirectly increase the rate at which poorly soluble medications dissolve. These excipients swell rapidly in the presence of fluid, breaking down the tablet matrix and increasing surface area exposure. For erythromycin stearate tablets, the inclusion of super disintegrants can markedly improve dissolution onset, thus promoting faster drug release in the GI tract. Optimizing super disintegrant concentration is critical; excessive amounts may lead to poor mechanical strength or taste masking issues. 43,44

4.9 Other Novel Approaches:

Emerging strategies include nanocarriers like polymeric nanoparticles, dendrimers, and stimulus-responsive delivery systems designed to enhance solubility and site-specific drug release. ⁴⁵ Techniques such as spray drying, freeze-drying, and in situ amorphization have improved dissolution by producing stable amorphous formulations. ⁴⁶ Furthermore, formulation approaches utilizing 3D printing and co-amorphous systems are under exploration to tailor dissolution profiles for drugs similar to erythromycin stearate. These novel methodologies aim to overcome limitations of traditional approaches and provide better bioavailability with patient-centric dosage forms. ^{45,46}

1 1

USP Dissolution Apparatus

ISSN NO: 0363-8057

Figure.4 USP Dissolution Apparatus (Paddle Method) for testing drug release from solid dosage forms.

Dissolution testing of erythromycin stearate tablets typically employs USP Apparatus 2 (paddle method) at 37±0.5°C and 100 rpm, using phosphate buffers at pH 6.8–7.2 to simulate intestinal conditions. 47,49 Sampling at defined intervals with analysis by UV spectroscopy at 236 nm allows construction of dissolution profiles, evaluated by parameters such as percent dissolved at time points and similarity factors. 48 Variations in buffer pH influence dissolution rates, with surfactants sometimes added to maintain sink conditions 50. Modelling dissolution data with Weibull or Higuchi kinetics aids in understanding drug release mechanisms 51. Factors such as tablet hardness and excipients further impact dissolution and disintegration behaviour, supporting quality control and in vivo absorption predictions. 52

5.1Analytical Techniques: HPLC and Spectroscopy for Quantification in Dissolution Studies:

High-performance liquid chromatography (HPLC) is the gold standard for quantifying drugs in dissolution testing due to its high specificity, sensitivity, and accuracy. HPLC often employing a C18 reverse-phase column enables separation and quantification even in complex matrices, eliminating interference from excipients and degradation products.⁵⁵ Method development typically focuses on optimizing the mobile phase composition, flow rate, detection wavelength, and sample stability, ensuring robust and reproducible results. Regulatory guidelines emphasize validation parameters such as linearity, precision, accuracy, specificity, detection limits, and solution stability according to ICH and pharmacopeial standards.⁵³

UV-visible spectroscopy is another widely used technique for quick, cost-effective quantification, especially for routine monitoring and simple formulations. 54 It relies on the drug's specific absorbance typically at its maximum wavelength (λ max)but offers less selectivity than HPLC, as excipients or co-formulated substances can potentially interfere. Recent studies highlight the trend of using HPLC for primary quantification and UV spectrophotometry as a supporting or screening method, particularly in the context of dissolution studies for tablet formulations. 56,57

Both techniques require method validation, with HPLC preferred for final release and stability testing due to its superior performance in mixed or impurity-laden samples, while UV spectrophotometry remains valuable for preliminary assessments and rapid quality control checks.

6. IN VITRO-IN VIVO CORRELATION (IVIVC) CONSIDERATIONS:

Establishing an *in vitro in vivo* correlation (IVIVC) is a vital component in the evaluation of erythromycin stearate tablet formulations aimed at enhancing solubility and dissolution. *IVIVC* refers to the relationship between a drug's *in vitro* dissolution characteristics and its *in vivo* bioavailability or plasma concentration-time profiles. For erythromycin stearate a drug with poor and pH-dependent solubility designing predictive *IVIVC* models is complex, often necessitating the use of biorelevant media that closely mimic gastrointestinal fluids and physiological conditions to generate meaningful dissolution data.⁵⁸

Regulatory agencies, including the US FDA and EMA, emphasize the use of Level An *IVIVC*, which establishes point-topoint relationships between the entire *in vitro* dissolution curve and *in vivo* absorption profiles, enabling effective prediction of pharmacokinetic parameters from dissolution tests.⁵⁹

Such correlation supports formulation optimization, batch-to-batch consistency, and regulatory flexibility, including potential biowaivers for certain post-approval changes. *IVIVC* development for erythromycin stearate involves comprehensive *in vitro* dissolution testing preferably using multiple pH conditions and surfactant-enhanced media followed by pharmacokinetic studies in appropriate animal models or human subjects. ⁶⁰Advanced mathematical modelling, including deconvolution and simulation, further strengthens the predictive capacity of *IVIVC*. Ultimately, a well-established *IVIVC* aids not only in streamlining product development but also in ensuring that enhanced tablet formulations reliably translate to improved therapeutic outcomes in patients. ⁶¹

Table: 1 Patents and marketed formulations related to enhancement of solubility and dissolution of erythromycin stearate

S. N O	Patent Title	Technology Focus	Brief Description	Patent No	Ref NO
1	Erythromycin and derivatives thereof	rivatives thereof preparation methods salts, solubility, and synthesis methods		US2653899A	62
2	derivatives erythromycin derivatives			US3417077A	63
3	Pharmaceutical composition containing erythromycin	Oil-based oral formulations	Oil suspensions/emulsions to enhance oral absorption of erythromycin	EP0302370A1	64
4	Acyl erythromycin derivative compositions	Acetyl erythromycin stearate formulations	Improved solubility and stability with acetylated erythromycin derivatives	US4599326A	65
5			Stable tablets, excipient blends, taste-masking	US3865935A	66
6	Erythromycin Enteric capsules with Pluronic-based enteric capsules, micronized erythromycin for bioavailability enhancement		WO2016204656 A1	67	
7	Oral suspension containing erythromycin	Combined oral suspensions	Multi-component suspensions/coatings for stable, bioavailable erythromycin	WO1998036756 A1	68
8	Oral sustained- release erythromycin preparation	Controlled release formulations	Sustained release erythromycin tablets	US20020081332 A1	69
9	Process for preparing solid pharmaceutical forms	Processing low-solubility APIs	Improvements in processing/formulation for poorly soluble APIs, including erythromycin stearate	EP2468258A1	70
10	Pharmaceutical Polymer disintegrants in composition for solid dosages rate or al solids		Soluble polymers and foaming agents enhance disintegration and dissolution	EP3705118A1	71
11	Solid Solid dispersion pharmaceutical technology Solid dispersions improving aqueou dissolution of poorly soluble drugs oral administration		EP0179583A1	72	
12	Green process for Eco-friendly preparation Green, aqueous-base producti		Green, aqueous-base production process for erythromycin stearate	WO2014140699 A1	73
13			Organic solvent-based processes for novel erythromycin salts	EP2301945B1	74
14	Dispersible solid pharmaceutical composition	Dispersible tablet compositions	Solid dispersions with rapid disintegration	EP1906937B1	75
15	Stabilized erythromycin estolate tablet and preparation method	Stabilized erythromycin estolate tablet	Improved stability and dissolution via excipient and/or process selection	CN103976964A	76
16	Modified release tablets of erythromycin	Modified-release drug delivery	Sustained/controlled release formulations for erythromycin	EP1933193A1	77
17	Multi-layer erythromycin tablet and manufacturing method	Multi-layered/coated erythromycin tablets	Multi-layer or film-coated tablets for staged release	CN107491630A	78
18	Nanoparticle formulation of erythromycin	Nanoparticle drug delivery	Nanoparticles to enhance solubility and oral absorption	WO2021077672 A1	79
Ξ ¹⁹ 11	Enteric 13554Fi 912025	Enteric nanoparticulate compositions	Nanoparticles with enteric coatings for targeted release	US8613979B2 PAG	580 GE N

GRADIV	A R	EddfeWidoldRN	AL		ISSN NO	0363-80
		method				
	20	Amorphous solid dispersion of erythromycin	Amorphous solid dispersions	Amorphous erythromycin dispersions to boost dissolution	WO2013125405 A1	81
	21	Combination oral therapy with erythromycin	Combination oral therapy	Co-formulation with adjunct compounds/excipients to improve absorption	US8192767B2	82
	22	Taste masked fast dissolving composition of erythromycin	Taste-masking and rapid- release formulations	Masking erythromycin taste, improving dissolution and stability	US8367106B2	83
	23	Multiarticulate pharmaceutical compositions	Multiarticulate, polymer- coated delivery	Multi-particulate polymer-coated systems for controlled release	EP1970892A1	84
	24	Spray-dried pharmaceutical composition	Spray-dried erythromycin compositions	Spray-drying for amorphous forms of erythromycin with improved dissolution	US20130243816 A1	85
	25	Pharmaceutical compositions comprising erythromycin	Excipient and coating innovations	Improvements in tablet excipients and coatings to enhance bioavailability	US3891755	86

8.KEY ASPECTS OF SAFETY, STABILITY, AND REGULATORY REQUIREMENTS:

Enhancing the solubility and dissolution of erythromycin stearate in tablet formulations is critical not only for improving bioavailability but also for maintaining drug stability and meeting regulatory standards. Stability challenges often arise due to the drug's susceptibility to hydrolysis and degradation under heat and moisture, necessitating careful selection of excipients and protective coatings that can preserve the erythromycin stearate's integrity during manufacturing and shelf-life. Regulatory guidelines emphasize stringent evaluation of stability profiles under various ICH-recommended conditions to ensure consistent potency, safety, and efficacy. Additionally, excipient compatibility and manufacturing processes must mitigate risks of polymorphic changes or amorphous form recrystallization that could affect dissolution rates and safety. Toxicological evaluations are essential to ascertain the safety of solubility enhancers and novel formulation excipients employed. Ultimately, the formulation must comply with pharmacopeial standards and regulatory submissions require comprehensive stability data demonstrating sustained performance and patient safety.

9.CONCLUSION:

Enhancing the solubility and dissolution of erythromycin stearate in tablet formulations is crucial for overcoming its intrinsic limitations of poor water solubility and acid instability, which adversely affect oral bioavailability. Effective formulation approaches, including size reduction, complexation, lipid-based systems, and solid dispersions, can significantly improve drug release and absorption. Maintaining chemical and physical stability during manufacturing and storage requires careful excipient selection and protective strategies. Compliance with regulatory stability requirements and safety evaluation ensures formulation robustness and patient safety. Continued innovation, especially in nanoformulations and multi-functional delivery systems, holds substantial promise for advancing erythromycin stearate therapy. This review underscores the importance of a multidisciplinary approach to formulation design that balances solubility enhancement with stability and regulatory compliance, enhancing therapeutic efficacy and patient outcomes.

REFERENCES:

- Nayak AK, Maji R, Das B. Self-Nanoemulsifying Drug Delivery System of Erythromycin Stearate: Formulation, In Vitro and In Vivo Evaluation. AAPS Pharm Sci Tech. 2015;16(3):586-96.
- 2. Patel AN, MM. Self-Nanoemulsifying Drug Delivery System of Erythromycin Stearate: Formulation Development and Evaluation. J Pharm Sci Innova. 2016;5(2):44-51
- 3. Tariq M, Sultan S, Rafiq S. Enhancement of Dissolution Rate of Erythromycin Stearate Through Solid Dispersion Technique. Pak J Pharm Sci. 2013;26(5):947-53.
- 4. Patel AB, Parmar D, Desai S. Formulation Development and Evaluation of Solid Dispersions of Erythromycin Stearate. Int J Pharm Investing. 2013;3(3):142-9.
- 5. Singh Y, Saini S, Yadav A. Formulation and Evaluation of Solid Dispersion of Erythromycin Stearate by Melt Granulation Technique. Der Pharm Lett. 2017;9(3):65-72.
- 6. Patel J, Patel M. Formulation and Evaluation of Self-Nanoemulsifying Drug Delivery System of Erythromycin Stearate for Enhanced Bioavailability. Int J Pharm Tech Res. 2016;9(8):360-75.

- ISSN NO: 0363-8057
- 9. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/erythromycin-stearate
- 10. Nistor D, Barbu-Tudoran L, Alexa-Stratulat T, Muntean D, Suciu I, Crisan O, *et al.* Erythromycin Formulations A Journey to Advanced Drug Delivery. Pharmaceutics. 2022;14(10):2146.
- 11. Bhadra S, *et al.* Development of pH sensitive polymeric nanoparticles of erythromycin stearate. J Young Pharm. 2016;8(3):235-240.
- 12. https://go.drugbank.com/drugs/DB00199
- 13. Mukesh S. Formulation and Evaluation of Solid Dispersion Capsules Containing Erythromycin Stearate. Addis Ababa University; 2023.
- 14. Xie B, Cui H, Yang R, Li J, Wang Y, Li S, et al. Recent advances in solubility enhancement techniques: Trends and future prospects for poorly water-soluble drugs. Acta Pharm Sin B. 2024;14(11):4683–4716.
- 15. Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life (Basel). 2023;13(5):1099.
- 16. Mahmood T, Sarfraz RM, Ismail A, Ali M. Pharmaceutical methods for enhancing the dissolution of poorly water-soluble drugs. Assay Drug Dev Technol. 2023;21(2):65-79.
- 17. Lakamalla D, Eswaraiah MC. Recent advances in solubility enhancement techniques for poorly soluble drugs. Pharmaceutics Rev Res Adv Technol (PRRAT). 2024;10:134-143.
- 18. Mahapatra APK, Patil VS, Patil R. Solubility enhancement of poorly soluble drugs by using novel techniques: a comprehensive review. Int J Pharm Tech Res. 2020;13(2):80-93.
- 19. Deshmukh MT, Deshmukh DD. Novel strategies for the formulation of poorly water-soluble drugs: An overview. Pharmaceutics. 2025;15(3):1420.
- 20. Lakamalla D, Eswaraiah MC. Recent advances in solubility enhancement techniques for poorly soluble drugs. Pharmaceutics Rev Res Adv Technol. 2024;10:134-143.
- 21. Kumar K, Singh S, Kalia K. Particle size reduction: A promising approach for enhancement of bioavailability of poorly soluble drugs. J Pharm Sci Res. 2021;13(1):1-9.
- 22. Mahmoodi N, *et al.* Nanonization: An effective strategy for enhancing oral bioavailability of poorly soluble drugs Recent advances and future outlook. Drug Dev Res. 2022;83(3):482-494.
- 23. Tripathi A, *et al.* Application of supercritical fluid technology in particle size reduction and drug delivery. Pharmaceutics. 2023;15(1):120.
- 24. Kumari L, *et al.* Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. Life (Basel). 2023;13(5):1099
- 25. Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, *et al.* Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. *Life (Basel)*. 2023;13(5):1099. doi:10.3390/life13051099.
- 26. Mahmood T, Sarfraz RM, Ismail A, Ali M. Pharmaceutical methods for enhancing the dissolution of poorly water-soluble drugs. *Assay Drug Dev Technol*. 2023;21(2):65–79.
- 27. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: Basic science and product development. J Pharm Sci. 2012;101(9):3019–3032.
- 28. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: An updated review. AAPS Pharm SciTech. 2005;6(2):E329–E357.
- 29. Carrier RL, Miller LA, Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J Control Release. 2007;122(1):3–10.
- 30. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Adv Drug Deliv Rev. 1998;36(1):1–15.
- 31. Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535(1–2):272–284.
- 32. Mahmood T, *et al.* Pharmaceutical methods for enhancing the dissolution of poorly water-soluble drugs. *Assay Drug Dev Technol.* 2023;21(2):65-79.
- 33. Pouton, C.W. (2006). Formulation of Self-Emulsifying Drug Delivery Systems. Advanced Drug Delivery Reviews, 60(6), 625–637.
- 34. Porter, C.J.H., Trevaskis, N.L., & Charman, W.N. (2007). Lipids and Lipid-Based Formulations: Optimizing the Oral Delivery of Lipophilic Drugs. Nature Reviews Drug Discovery, 6(3), 231–248.
- 35. Gursoy, R.N., & Benita, S. (2004).Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of VOLUME lipqshdigrdrugs Piognedicine & Pharmacotherapy, 58(3) 173–182.

 PAGE NO: 658

- GRADIVA SHEWBE WAND DRWAL, M., Padh, H., & Khatri, N. (2019). Enhancement of oral bioavailability of Statistical drugs by self-emulsifying drug delivery systems (SEDDS): Formulation and bioavailability assessment using in vitro, in situ and in vivo techniques. Current Drug Delivery, 16(1), 1–16.
 - 37. Alshora, D.H. *et al.* (2019).Preparation and characterization of self-nanoemulsifying drug delivery system (SNEDDS) containing vitamin E TPGS for improved oral bioavailability of poorly soluble drugs. AAPS pharm SciTech, 20, 43.
 - 38. Aakeroy, C.B., & Salmon, D.J. (2005). Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm, 7, 439–448.
 - 39. Almarsson & Zaworotko, M.J. (2004). Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chemical Communications, (17), 1889–1896.
 - 40. Childs, S.L., Chyall, L.J., Dunlap, J.T., Smolenskaya, V.N., Stahly, B.C., & Stahly, G.P. (2004). Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular Pharmaceutics, 1(5), 433–444.
 - 41. Craig, D.Q.M. (2002). The mechanisms of drug release from solid dispersions in water-soluble polymers. International Journal of Pharmaceutics, 231(2), 131–144.
 - 42. Censi, R., & Di Martino, P. (2015). Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs. Molecules, 20(10), 18788-18823.
 - 43. Shinkar, D., Kumar, A., & Upadhyay, P. (2016). Super disintegrants: An Emerging Trend in the Design of Oral Dosage Forms. *Pharmacie Globale*, 7(3), 1-7.
 - 44. Khan, S., Kumar, V., Singh, M., & Rizvi, S. A. A. (2017). Role of Super disintegrants in Formulation of Solid Dosage Forms: A Review. *International Journal of Pharmaceutical Sciences and Research*, 8(5), 1827-1837.
 - 45. Singh, B., & Sharma, N. (2019). Nanocarriers for the oral delivery of poorly water-soluble drugs. Advanced Drug Delivery Reviews, 156, 180–195.
 - 46. Bollen V, Mehnert W, Fricker G. Advanced formulation strategies for poorly soluble drugs: *In situ* amorphization, coamorphous systems and 3D printing. Eur J Pharm Bio pharm. 2020;154:89-100.
 - 47. United States Pharmacopeial Convention. United States Pharmacopeia 43 National Formulary 38 (USP 43–NF 38). Rockville, MD: US Pharmacopeial Convention; 2020.
 - 48. Shah VP, Tsong Y, Sathe P, Liu JP. *In vitro* dissolution profile comparison statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15(6):889-96.
 - 49. Vatanara A, Hamidi M, Tajerzadeh H. Drug dissolution testing: An updated review of literature. Eur J Pharm Sci. 2021;163:105895.
 - 50. Sugimoto K, Saitoh Y, Takayama K. Influence of pH and surfactant on dissolution behaviour of poorly soluble drugs: *In vitro* dissolution testing considerations. Drug Dev Ind Pharm. 2015;41(7):1118-27.
 - 51. Das S, et al. Application of different kinetic models to drug dissolution studies a case study. Int J Pharm Sci. 2013;5(3):330-4.
 - 52. Aulton ME, Taylor K. Aulton's Pharmaceutics: The Design and Manufacture of Medicines. 5th ed. Elsevier; 2018.
 - 53. Abdel-Hamid MM, El-Enin SMM, Abdelrahman MM. Development and validation of a stability-indicating HPLC method for simultaneous determination of erythromycin and related substances in pharmaceutical dosage forms. *Journal of Chromatographic Science*. 2018;56(10):929-937.
 - 54. ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology Q2(R1). International Conference on Harmonisation; 2005.
 - 55. Patel S, Dave R. UV spectrophotometric method for estimation of erythromycin in bulk and pharmaceutical dosage form. International Journal of Pharmaceutical Sciences and Research. 2012;3(2):644-7.
 - 56. Shabir GA. Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonisation. Journal of Chromatography A. 2003;987(1-2):57-66.
 - 57. Roy SK, Mandal A, Chatterjee BK. Comparative spectrophotometric and chromatographic methods for determination of erythromycin stearate in tablets. Analytical Chemistry Insights. 2011;6:29-38.
 - 58. Vatanara A, Hamidi M, Tajerzadeh H. Drug dissolution testing: An updated review of literature. Eur J Pharm Sci. 2021;163:105895.

- GRADIVA REPVILLA FOLLY Pang Z, Guo Y, Gao W. Applications and developments of in vitro-in vila Sour Victor 0363-8057 oral modified-release dosage forms: A Review. Drug Dev Ind Pharm. 2022;48(2):189-202.
 - 60. Guidance for Industry: Extended-Release Oral Dosage Forms: Development, Evaluation, and Application of *In Vitro/In Vivo* Correlations. US Food and Drug Administration; 1997.
 - 61. Orozco P, Nguyen MA, Boudier A. *In vitro-in vivo* correlation (*IVIVC*) for oral formulations How and why Biopharmaceutics Classification System (BCS) and biorelevant dissolution play a central role: An overview. Pharmaceutics. 2022;14(3):52
 - 62. US2653899A. Erythromycin and derivatives thereof.
 - 63. US3417077A. Erythromycin derivatives.
 - 64. EP0302370A1. Pharmaceutical composition containing erythromycin.
 - 65. US4599326A. Acyl erythromycin derivative compositions.
 - 66. US3865935A. Erythromycin tablet formulation.
 - 67. WO2016204656A1. Erythromycin enteric capsule.
 - 68. WO1998036756A1 Oral suspension containing erythromycin.
 - 69. US20020081332A1.Oral sustained-release erythromycin preparation.
 - 70. EP2468258A1.Process for preparing solid pharmaceutical forms.
 - 71. EP3705118A1.Pharmaceutical composition for solid dosages.
 - 72. EP0179583A1.Solid pharmaceutical composition for oral administration.
 - 73. WO2014140699A1.Green process for erythromycin stearate.
 - 74. EP2301945B1.Preparation of erythromycin A derivatives.
 - 75. EP1906937B1.Dispersible solid pharmaceutical composition.
 - 76. CN103976964A. Stabilized erythromycin estolate tablet and preparation method.
 - 77. EP1933193A1.Modified release tablets of erythromycin.
 - 78. CN107491630A. Multi-layer erythromycin tablet and manufacturing method.
 - 79. WO2021077672A1. Nanoparticle formulation of erythromycin.
 - 80. US8613979B2. Enteric nanoparticulate composition and method.
 - 81. WO2013125405A1. Amorphous solid dispersion of erythromycin.
 - 82. US8192767B2. Combination oral therapy with erythromycin.
 - 83. US8367106B2.Taste masked fast dissolving composition of erythromycin.
 - 84. EP1970892A1.Multiarticulate pharmaceutical compositions.
 - 85. US20130243816A1.Spray-dried pharmaceutical composition.
 - 86. US3891755. Pharmaceutical compositions comprising erythromycin.
 - 87. Wu C, Zhong Y, Zhou L. Strategies for enhancing stability and solubility of erythromycin formulations. Int J Pharm. 2018;543(1-2):23-31.
 - 88. Patel D, Patel M, Patel R. Formulation design to enhance erythromycin stability in solid dosage forms. Drug Dev Ind Pharm. 2020;46(9):1503-12.
 - 89. International Conference on Harmonisation. Q1A(R2) Stability Testing of New Drug Substances and Products. 2003.
 - 90. Kumar A, Babu RJ. Impact of polymorphism on dissolution and safety of solid oral dosage forms. J Pharm Sci. 2017;106(5):1290-8.
 - 91. U.S. Food and Drug Administration. Guidance for Industry: Nonclinical Safety Evaluation of Pharmaceutical Excipients. 2016.
 - 92. European Medicines Agency. Guideline on Stability Testing of Existing Active Substances and Related Finished