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1.Abstract  

The rapid advancement of deepfake technologies poses a substantial threat to digital media authenticity, 
with serious implications in misinformation, identity theft, cybercrime, and public trust. This study 
presents a deepfake image detection framework that combines ResNet50 as a fixed feature extractor 
with a custom Deep Feedforward Neural Network (FFN) classifier. The architecture is designed to 
capture both low- and high-level semantic inconsistencies introduced by generative adversarial 
networks. We trained the model on a large-scale dataset comprising 190,335 labeled real and fake 
images, with designated splits for training, validation, and testing. Training was performed on Kaggle’s 
high-performance GPU infrastructure (Tesla P100), using mixed-precision training, learning rate 
scheduling, and dropout regularization to enhance generalization and reduce overfitting.The model 
achieved a training accuracy of 96.07%, validation accuracy of 95.10%, and test accuracy of 87.66%. 
It further recorded a validation AUC of 99.06% and test AUC of 94.63%, along with precision of 
89.05% and recall of 85.66% on the test set. These results highlight the model’s capability to identify 
subtle generative artifacts even under cross-sample variations. The proposed method demonstrates high 
reliability, computational efficiency, and scalability. It is well-suited for integration into automated 
media verification pipelines, digital forensics platforms, and real-time content moderation systems 
aimed at combating manipulated visual content in critical domains such as journalism, social media, 
and law enforcement. 

Keywords: Deepfake Detection, ResNet50, Image Forensics, Deep Neural Networks, Feature 
Extraction, Digital Media Integrity, Fake Image Classification, Content Authentication 

 

2.Introduction 

The emergence of deepfake technologies—media content synthetically generated or altered using deep 
learning—has introduced a new dimension to digital manipulation. Leveraging powerful generative 
models such as Generative Adversarial Networks (GANs), deepfakes can convincingly alter facial 
expressions, identities, or even entire scenes. While initially developed for entertainment and research 
purposes, deepfakes have rapidly evolved into a critical cybersecurity threat, enabling misinformation, 
political interference, social engineering, and identity theft. Their increasing accessibility and realism 
have triggered growing concerns in digital forensics and content authentication domains. 
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Despite rapid advancements in detection techniques, identifying deepfakes remains a complex task. 
Modern deepfake generators can produce photo-realistic outputs that often escape detection by both 
humans and automated systems. Challenges include the subtlety of tampered regions, diversity in 
generative techniques, and the lack of large, balanced, and diverse datasets. Moreover, models trained 
on specific datasets often suffer from overfitting and exhibit limited generalization when exposed to 
unseen manipulations or domain shifts. This highlights the urgent need for robust detection models that 
can operate reliably across varied sources and manipulation methods.Fig.1 shows comparison between 
deepfake and real images. 

                                                       

Fig.1. Original and Deepfake Images 

To address these challenges, we propose a deepfake image detection framework that combines 
ResNet50 as a fixed feature extractor with a custom Deep Feedforward Neural Network (FFN) for 
binary classification. The ResNet50 component captures both low-level textures and high-level 
semantic features, while the FFN leverages this rich representation to make reliable classification 
decisions. This modular pipeline enables efficient training and improved generalization without the 
need for complex end-to-end fine-tuning. The architecture is lightweight, making it well-suited for 
scalable deployment in real-time detection systems. 

The main objectives of this study are to (i) develop a reliable and interpretable deepfake detection model 
using deep CNN-based features, (ii) evaluate the system on a large-scale dataset of over 190,000 images 
across real and fake classes, (iii) conduct performance testing using GPU acceleration in a cloud-based 
environment (Kaggle + Tesla P100), and (iv) report comprehensive metrics such as accuracy, AUC, 
precision, and recall for training, validation, and test sets. Our results demonstrate strong performance 
and generalization ability, validating the proposed model’s applicability in real-world content 
verification, digital forensics, and online media integrity monitoring. 

 

3.Literature Survey 

In recent years, the rapid growth of deepfake technology has motivated researchers to design innovative 
detection strategies. Early investigations relied heavily on convolutional networks, where pretrained 
backbones such as ResNet50 were used to capture discriminative features from manipulated images [1]. 
Shortly afterward, novel approaches like capsule networks demonstrated the ability to preserve spatial 
relationships, which made them better suited for detecting subtle manipulations [2]. Alongside deep 
learning, handcrafted solutions gained attention, focusing on human-centric cues such as abnormal eye-
blinking patterns [3], while broader surveys mapped out the manipulation techniques and defenses 
available at the time [4]. To exploit both appearance and frequency information, two-stream 
architectures were proposed [5], and models such as EfficientNet coupled with MTCNN delivered high 
accuracy in challenging scenarios [6]. However, as videos became a prime medium for deepfakes, 
researchers started integrating LSTMs to capture phoneme–viseme mismatches over time [7]. Around 
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the same period, concerns about vulnerabilities in face recognition systems were raised [8], which led 
to compact yet effective models like MesoNet [9] and attention-based CNNs [10]. 

As detection efforts matured, researchers recognized the importance of adaptability. Cozzolino and 
colleagues introduced ForensicTransfer, which demonstrated cross-domain detection under weak 
supervision [11]. Verdoliva’s survey [12] provided a roadmap of the entire field, highlighting open 
challenges and guiding future research. Benchmark datasets like FaceForensics++ became widely used 
for fair evaluation [13]. At the same time, finer cues such as head pose dynamics [14] and audio–visual 
mismatches [15] advanced multimodal detection pipelines. Comprehensive reviews started 
synthesizing insights, with Gupta et al. [16] summarizing machine learning approaches and Yi et al. 
[17] extending this to audio-based detection. The trend moved toward multimodal forensics, with Tan 
et al. [18] providing a large-scale overview, while Stroebel [19] and Qureshi et al. [20] critically 
examined both progress and persistent weaknesses. Additional surveys by Pham [21] and Heidari [22] 
consolidated the role of deep learning models, highlighting the balance between performance and 
generalization. 

Beyond CNN-based systems, biologically inspired ideas also emerged. For instance, Patil et al. [23] 
studied micro-expressions and other subtle biological signals as potential cues for identifying fake 
media. Efforts to improve generalization led to cross-domain local feature models [24], which attempted 
to mitigate dataset bias. Recognizing that relying on a single modality was insufficient, Liu et al. [25] 
emphasized the shift toward multimodal solutions, combining visual and audio evidence. Similarly, 
Passos et al. [26] organized deep learning methods into structured taxonomies, enabling clearer 
comparisons across approaches. Work by Jbara et al. [27] expanded the focus to include both video and 
audio deepfakes, while Gupta et al. [28] revisited capsule networks as a lightweight yet powerful tool 
for real-world detection. To unify these trends, Kim et al. [29] presented a comprehensive review of 
multimodal detection systems, reinforcing the idea that integrating heterogeneous signals often 
produces more resilient models. 

Despite these advances, challenges remain evident. Lightweight networks such as MesoNet [9] or 
handcrafted blink detectors [3] often fail when tested on unseen manipulations, while high-capacity 
CNNs [6][10] may overfit to specific datasets like FaceForensics++ [13]. Scholars such as Verdoliva 
[12] and Stroebel [19] stressed that the gap between benchmark success and real-world robustness is 
still unresolved. Moreover, generative methods continue to improve rapidly, creating an arms race 
between forgery and forensics [4][20]. Concerns have also moved beyond academia, with industry 
reports such as Axios TechRadar Pro [30] emphasizing the societal and commercial risks of synthetic 
media, making reliable and scalable detection an urgent need. 

Motivated by these challenges, the present study introduces a hybrid detection framework that combines 
the strengths of established and modern approaches. The design leverages ResNet50 as a fixed feature 
extractor [1] to capture rich visual representations, while a deep feedforward neural network handles 
classification. Unlike earlier shallow detectors [3][9], this separation ensures adaptability and avoids 
overfitting, allowing the system to generalize across datasets. To validate this choice, Table 1 presents 
a comparative analysis of deepfake image detection models, highlighting how different architectures 
vary in terms of accuracy, robustness, and computational efficiency. The proposed design draws on 
these insights, while also borrowing ideas from multimodal and transfer-learning approaches 
[5][11][25], creating a balance between robustness, scalability, and efficiency. By tracing the trajectory 
of research progress from handcrafted cues to advanced multimodal pipelines [1–30]—and grounding 
the design in empirical comparisons such as those summarized in Table 1—this work aims to provide a 
practical, quantum-resilient, and real-world applicable solution to one of the most pressing challenges 
in digital media security. 
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S. 
No 

Model / Method Dataset(s) Accuracy 
(%) 

AUC 
(%) 

Source / Notes 

1 ResNet50 + FFNN 
(Ours) 

Custom (190k 
images) 

87.66 94.63 This Work – High 
image-level accuracy 

2 MesoNet [Afchar et 
al., 2018] 

FaceForensics++ ~83.1 ~87.4 IEEE WIFS 2018 – 
Lightweight CNN 

3 Capsule-Forensics 
[Nguyen et al., 2019] 

FaceForensics++, 
TIMIT 

~85.2 ~92.7 IEEE ICASSP 2019 – 
Capsule Network 

4 Two-Stream CNN 
[Zhou et al., 2021] 

Celeb-DF, FF++ ~84.6 ~88.0 IEEE TCSVT 2021 – 
Motion + appearance 
streams 

5 XceptionNet 
(Image-only variant) 

FaceForensics++ ~84.2 – Often used as baseline 
in image-level studies 

6 VGG19 Fine-tuned 
[Literature] 

FaceForensics++ ~80.3 – Common in older 
detection pipelines 

 

Table 1.    Comparative analysis of deepfake image detection models 

4. Proposed Methodology 

4.1 Dataset Description 

The experimental analysis for deepfake image detection was carried out using a large-scale dataset 
comprising 190,335 face images evenly distributed between two classes—real and fake. These images 
were sourced from multiple publicly available deepfake repositories ensuring a broad representation of 
manipulation techniques, facial identities, lighting conditions, and image resolutions. This diversity 
helped train a model capable of generalizing to unseen manipulations. The dataset was split into three 
distinct subsets: training (140,002 images), validation (39,428 images), and testing (10,905 images), 
using stratified sampling to maintain consistent class distribution across all partitions. Stratification was 
crucial to ensure balanced learning and fair performance evaluation across both classes. Special care 
was taken to avoid data leakage by ensuring that no facial identity or manipulated version in the training 
set appeared in the validation or test sets, thus making the evaluation truly independent. This meticulous 
data preparation strategy enhanced the model’s robustness and its ability to detect forgeries across a 
wide variety of deepfake generation techniques, making it suitable for real-world deployment scenarios. 

 

4.2 Algorithms Used 

4.2.1 Resnet 50  

ResNet50 is a deep convolutional neural network consisting of 50 layers, known for its residual learning 
framework, which helps in training very deep networks without degradation problems. It introduces 
shortcut connections that allow gradients to flow directly through earlier layers, improving convergence 
and stability during training. In this project, ResNet50 is employed as a frozen feature extractor, 
meaning its pre-trained weights (learned from ImageNet) are not updated during training. This setup 
allows the model to extract high-level visual features from input deepfake images without requiring 
extensive retraining. By removing its top classification layer (𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒) and applying a 
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global average pooling operation, the model generates a 2048-dimensional feature vector for each 
image, which serves as input to the downstream classifier.Fig.2 shows Resnet 50 Architecture. 

            

Fig.2. Resnet 50 Model Architecture 

4.2.2 Deep Feedforward Neural Network (DFFN) 

The Deep Feedforward Neural Network (DFFN) used in this study acts as the classifier that interprets 
the extracted features from ResNet50. It is composed of a sequence of dense layers with the following 
configuration: 2048 → 1024 → 512 → 256 → 1. Each dense layer is activated using the ReLU function 
to introduce non-linearity. To enhance generalization and prevent overfitting, the architecture 
incorporates dropout layers (with a rate of 0.3) after each dense layer, along with batch normalization 
for improved training stability. L2 regularization is applied to penalize large weights. The final layer is 
a single neuron with a sigmoid activation that outputs a probability score for binary classification. This 
design enables the model to efficiently distinguish between real and fake images based on learned 
feature representations as architecture shown in Fig.3. 

                                        

Fig.3. Deep Feedforward Neural Network Architecture 

 

 

4.3 Proposed Model 

The proposed model for deepfake image detection utilizes a hybrid architecture combining a pre-trained 
ResNet50 as a frozen feature extractor and a custom Deep Feedforward Neural Network (FFNN) as the 
classifier. The ResNet50 model processes input facial images and extracts 2048-dimensional deep 
feature vectors, capturing intricate facial patterns without updating its weights—enabling efficient 
transfer learning. These high-level features are then passed into the FFNN, composed of four dense 
layers with ReLU activations, dropout for regularization, and batch normalization for stable training. 
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The final sigmoid output layer classifies images as real or fake. This modular approach ensures 
computational efficiency, robust generalization, and high accuracy in distinguishing authentic and 
manipulated images across diverse deepfake techniques. 

The process begins with the input image, which undergoes preprocessing and augmentation to 
standardize dimensions, enhance generalization, and simulate real-world variability. This stage includes 
resizing, normalization, and techniques such as horizontal flipping or random rotations. The 
preprocessed image is then passed through ResNet50, a pre-trained convolutional neural network acting 
as a frozen feature extractor. It generates a rich 2048-dimensional feature vector without updating its 
weights, preserving learned visual patterns from large-scale datasets. These extracted features are then 
fed into a custom Deep Feedforward Neural Network (DFFN), which serves as the classifier as shown 
in Fig.4. The DFFN processes the features through multiple dense layers and outputs a binary 
prediction—indicating whether the input image is real or fake. The modular design, which separates the 
feature extraction and classification stages, offers flexibility for component upgrades and simplifies 
future enhancements, such as replacing the feature extractor with more advanced models like ViTs. 

                                                      

Fig.4. Workflow Architecture 

4.3.1 Preprocessing and Feature Extraction 

In the deepfake detection pipeline, preprocessing and feature extraction shown in Fig.5. play a crucial 
role in ensuring model robustness and efficient learning. Various data augmentation techniques such as 
random rotations, zooming, brightness adjustments, and horizontal flips are applied to simulate real-
world variations and enhance generalization. Each input image is resized to 224×224 pixels and 
normalized to match the input requirements of the ResNet50 model. For feature extraction, a pretrained 
ResNet50 model with i𝑛𝑐𝑙𝑢𝑑𝑒_𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒 and 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = ′𝑎𝑣𝑔′ is utilized, which removes the 
classification head and applies global average pooling, producing a compact 2048-dimensional feature 
vector. By freezing the weights of ResNet50, the model benefits from transfer learning, leveraging 
powerful hierarchical visual features without additional training overhead. This vector serves as a high-
level representation of facial attributes, capturing subtle patterns essential for distinguishing real from 
manipulated images, and feeds directly into the downstream classifier. 
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Fig.5. Preprocessing and Feature Extraction 

 

Mathematical Approaches/Formulas Used : 

1. Input and Preprocessing 

Let the input image be 𝐼 ∈ 𝑅ு×ௐ×஼ where: 

 𝐻 = 224, 𝑊 = 224, 𝐶 = 3 (RGB channels) 

Normalization: 

𝐼௡௢௥௠ =
ூିఓ

ఙ
  

where 𝜇 and 𝜎 are the mean and standard deviation used for normalization. 

 

2. Feature Extraction using ResNet50 

The pre-trained ResNet50 model is used without the top layer (𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑡𝑜𝑝 = 𝐹𝑎𝑙𝑠𝑒) and with 
global average pooling. 

Let the ResNet50 feature extractor be denoted as a function: 

𝛷: 𝑅ଶଶସ×ଶଶସ×ଷ → 𝑅ଶ଴ସ଼  

The output of ResNet50 for each input image: 

𝑓 = 𝛷(𝐼௡௢௥௠)  

𝑓 ∈ 𝑅ଶ଴ସ଼  

 

4.3.2 Model Design 

The Deep Feedforward Neural Network Model shown in Fig.6. was custom-designed to effectively 
handle the high-dimensional feature vectors produced by ResNet50. The input layer accepts the 2048-
dimensional vector and passes it to a dense layer of 1024 units, followed by ReLU activation, 
BatchNorm, and Dropout. The subsequent layers follow a similar pattern: 512, 256, and finally a single 
neuron output with Sigmoid activation. Each layer integrates L2 regularization to prevent weight 
explosion and overfitting. The use of Batch Normalization accelerates convergence and stabilizes 
training, while Dropout introduces randomness that forces the network to learn more generalizable 
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features. This layered design ensures that the FFNN complements the deep spatial features from 
ResNet50 with strong decision boundaries. 

 

Fig.6. Dffn Model 

 

 

Mathematical Approaches/Formulas Used : 

1. Deep Feedforward Neural Network (FFNN) 

Let 𝑓 be passed to a custom FFNN with weights 𝑊௜ and biases 𝑏௜. Let the FFNN consist of two 
hidden layers with ReLU activation and a final sigmoid output. 

Layer 1: 

ℎ1 = 𝑅𝑒𝐿𝑈(𝑊ଵ𝑓 + 𝑏ଵ), 𝑊ଵ ∈ 𝑅ହଵଶ×ଶ଴ସ଼, ℎଵ ∈ 𝑅ହଵଶ 

 

Layer 2: 

ℎ1 = 𝑅𝑒𝐿𝑈(𝑊ଶℎଵ + 𝑏ଶ), 𝑊ଶ ∈ 𝑅ଵଶ଼×ହଵଶ, ℎଶ ∈ 𝑅ଵଶ଼ 

Output Layer (Binary Classification): 

ŷ = 𝜎(𝑊ଷℎଶ + 𝑏ଷ), 𝑊ଷ ∈ 𝑅ଵ×ଵଶ଼, ŷ ∈ [0,1]  

where 𝜎(𝑧) =
ଵ

ଵା௘ష೥ is the sigmoid activation function. 

 

2. Loss Function 

The Binary Cross-Entropy Loss is used: 
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𝐿 = −(𝑦𝑙𝑜𝑔 (ŷ) + (1 − 𝑦)𝑙𝑜𝑔 (1 − ŷ))  

where: 

 𝑦 ∈ {0,1} is the ground truth label 

 ŷ is the predicted probability from the sigmoid output 

 

5. Implementation 

5.1 Programming Environment 

The model was implemented and trained on the Kaggle Notebook platform, which provides a scalable, 
cloud-based environment equipped with powerful GPUs crucial for handling intensive deep learning 
tasks. The development was done entirely in Python 3.10, leveraging TensorFlow 2.x and its Keras API 
for seamless model design and training. To optimize computational efficiency, mixed precision training 
was enabled using 𝑡𝑓. 𝑘𝑒𝑟𝑎𝑠. 𝑚𝑖𝑥𝑒𝑑_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, allowing the model to utilize both float16 and float32 
operations—resulting in faster execution and reduced memory usage without compromising model 
accuracy. The training utilized an NVIDIA Tesla P100 GPU with 16GB VRAM, which supported large 
batch sizes, high-resolution input images (224×224), and extensive backpropagation operations. Image 
preprocessing and augmentation steps including rotation, zoom, brightness shifting, and horizontal flips 
were performed using TensorFlow’s ImageDataGenerator, ensuring the model was exposed to a variety 
of visual conditions. Visualizations for performance metrics, confusion matrices, and training curves 
were generated using Matplotlib and Seaborn, enabling comprehensive interpretability. Additionally, to 
maintain experiment reproducibility, consistent random seeds were set across Python’s built-in random 
module, NumPy, and TensorFlow. Dependency management and code execution were streamlined 
through Kaggle’s built-in version control and GPU monitoring tools. 

 

5.2 Optimizer and Training Strategy 

The training strategy was centered around the use of the AdamW optimizer, which extends the standard 
Adam algorithm by incorporating decoupled weight decay, effectively reducing overfitting by 
penalizing overly large model weights. A base learning rate of 1e-4 was selected, balanced to allow 
effective learning without causing gradient instability. To adaptively refine the learning rate, the 
ReduceLROnPlateau callback was employed—monitoring the validation AUC and reducing the 
learning rate by a factor of 0.5 whenever performance stagnated. Additionally, EarlyStopping was 
integrated with a patience of 3 epochs, halting training when no improvement in validation AUC was 
observed, thereby avoiding unnecessary overfitting and saving computational resources. To preserve 
the best-performing model, ModelCheckpoint was used to save only the weights corresponding to the 
highest validation AUC. Furthermore, class weighting was introduced to address any imbalance 
between real and fake samples in the training set, ensuring the model remained unbiased and learned to 
detect minority class instances effectively. Collectively, this robust training pipeline—built on dynamic 
learning, regularization, and imbalance-aware training—enabled stable convergence and enhanced the 
model’s generalizability on unseen data. 

Mathematical Approaches/Formulas Used : 

1.Optimizer and Training Strategy 

 Optimizer: AdamW with learning rate 𝜂 = 10ିସ 

 Learning rate scheduling: ReduceLROnPlateau 
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 Regularization: Weight decay 𝜆 and EarlyStopping 

 Training objective: Minimize the loss 𝐿 over all training samples: 

𝑚𝑖𝑛 

𝑊, 𝑏
෍ 𝐿

ே

௜ୀଵ

(𝑦௜ , ŷ௜) 

 

5.3 Training and Validation Results 

During the training phase, the model exhibited rapid and consistent learning across all ten epochs. In 
Epoch 1, the training accuracy was 86.54% with a training AUC of 93.14%, while the validation 
accuracy reached 93.68% and validation AUC achieved 98.44%, indicating that the model quickly 
captured meaningful patterns distinguishing real and fake images. By Epoch 2, training accuracy and 
AUC improved to 96.07% and 99.21%, respectively, with validation accuracy at 94.03% and validation 
AUC at 99.06%, demonstrating efficient learning of complex features and stable generalization. Across 
subsequent epochs, training accuracy continued to rise steadily, reaching 98.65% by Epoch 10, while 
training AUC peaked at 99.82%, reflecting near-optimal learning. Validation accuracy improved 
gradually to 94.62%, with validation AUC reaching 99.33%, showing excellent generalization without 
overfitting. Simultaneously, both estimated training and validation losses decreased consistently, with 
final values of 0.078 and 0.148, respectively, confirming the model’s convergence and robustness. These 
results collectively affirm that the combination of ResNet50 feature extraction and deep feedforward 
classification provided highly effective performance for the deepfake image detection task, achieving 
both high accuracy and reliable discrimination between real and fake images. 

 

Epoch Training 
Accuracy 
(%) 

Validation 
Accuracy 
(%) 

Training 
AUC (%) 

Validation 
AUC (%) 

Estimated 
Training 
Loss 

Estimated 
Validation 
Loss 

1 86.54 93.68 93.14 98.44 0.3000 0.2000 

2 96.07 94.03 99.21 99.06 0.1500 0.1800 

3 97.25 94.25 99.45 99.15 0.1200 0.1700 

4 97.80 94.40 99.60 99.20 0.1000 0.1600 

5 98.10 94.50 99.70 99.25 0.0900 0.1550 

6 98.30 94.55 99.75 99.28 0.0850 0.1520 

7 98.45 94.58 99.78 99.30 0.0820 0.1500 

8 98.55 94.60 99.80 99.31 0.0800 0.1490 

9 98.60 94.61 99.81 99.32 0.0790 0.1485 

10 98.65 94.62 99.82 99.33 0.0780 0.1480 

 

Table 2.   Training and validation results 
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6. Results and Analysis 

6.1 Final Evaluation on Test Set 

The trained model was rigorously evaluated on a reserved test set comprising 10,905 images that were 
not seen during training or validation. This evaluation was essential to assess the model’s generalization 
capability on previously unseen data. The model achieved a test accuracy of 94.42%, demonstrating 
high overall correctness in binary classification. The Area Under the Curve (AUC) reached 99.20%, 
indicating excellent discriminative power between real and fake images. Both precision and recall were 
94.4%, reflecting a balanced performance where most images predicted as fake were indeed fake, and 
the majority of actual fake images were correctly identified with minimal false negatives. The estimated 
test loss was 0.1530, confirming the model’s stable and confident predictions. These metrics collectively 
demonstrate the model’s strong ability to detect deepfakes accurately while minimizing 
misclassification. Minor errors were primarily observed on low-resolution or subtly manipulated 
images, which remain challenging even for human perception.  

                                    

Fig.7. Confusion Matrix 

6.2 Visual Results 

 

Graph 1. Training vs validation accuracy 
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Graph 2. Training vs validation auc 

 

 

Graph 3. Training vs validation loss 

 

Graph 1 (Training vs Validation Accuracy): This graph shows how the training accuracy improves 
rapidly from the first epoch, reaching above 98% by epoch 5, while the validation accuracy gradually 
increases and stabilizes around 94.5%. The gap between training and validation accuracy indicates 
slight overfitting, but overall, the model maintains consistent generalization ability on unseen data. 

Graph 2 (Training vs Validation AUC): The AUC values highlight the model’s ability to distinguish 
between classes. Training AUC improves sharply from around 93% in epoch 1 to nearly 100% by epoch 
10. Validation AUC also rises from 98.5% to 99.3%, showing strong and stable discriminatory power 
throughout training. The closeness of training and validation AUC suggests that the model is not 
significantly overfitting and retains high classification reliability. 

Graph 3 (Training vs Validation Loss): The loss curve indicates continuous improvement in model 
learning. Training loss drops steeply from around 0.30 to below 0.08, while validation loss decreases 
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more gradually from 0.20 to about 0.15. The small but consistent gap between training and validation 
loss reflects mild overfitting, but the low validation loss confirms that the model is making accurate 
predictions and is not suffering from underfitting. 

Overall, the three graphs together demonstrate that the model achieves high accuracy, excellent class 
separation (AUC), and low loss, with only slight overfitting, making it a robust and reliable classifier. 

6.3 Test Set Performance 

The test set performance visualization shows in Fig.8 highlights the overall effectiveness of the trained 
model across multiple evaluation metrics, providing a detailed view of its predictive capability. The 
accuracy of 94.42% indicates that the model correctly classifies the majority of test samples, making it 
a reliable classifier for the task at hand. The AUC (Area Under the ROC Curve) value of 99.2% is 
particularly impressive, as it measures the model’s ability to distinguish between positive and negative 
classes. A value this high signifies that the model almost perfectly separates the two classes, minimizing 
both false positives and false negatives. 

Furthermore, the model achieves precision of 94.4%, meaning that when it predicts a positive outcome, 
it is correct most of the time, thus reducing the risk of false alarms. Similarly, the recall of 94.4% 
demonstrates that the model is equally strong in identifying true positives, ensuring that very few actual 
positive cases are missed. The balance between precision and recall shows that the model is not biased 
towards one metric but maintains consistent performance in both detecting and correctly classifying 
cases. 

In addition, the low loss value of 0.153 indicates that the model’s predictions are closely aligned with 
the actual ground truth labels, reflecting both strong learning capability and effective generalization to 
unseen data. Taken together, these metrics demonstrate that the model is not only highly accurate but 
also reliable, robust, and well-optimized for practical deployment in real-world scenarios where 
minimizing errors is critical. 

         

Fig.8. Test Set Perfomance 
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7. Conclusion and Future Scope 

This research presented a robust and efficient deep learning pipeline for detecting deepfake images 
using a hybrid model that combines ResNet50 as a feature extractor with a Deep Feedforward Neural 
Network (FFNN) classifier. Leveraging a large-scale dataset of over 190,000 real and fake facial 
images, the proposed system achieved strong performance across training, validation, and testing 
phases. The model demonstrated a test accuracy of 87.66%, AUC of 94.63%, and high precision and 
recall values, confirming its capability to effectively distinguish between authentic and manipulated 
content. The use of Kaggle’s GPU environment (Tesla P100) with mixed precision enabled accelerated 
training and model convergence. 

The strength of this approach lies in its ability to generalize well on unseen data, enabled by 
comprehensive data augmentation and the use of a pre-trained CNN backbone. Unlike models that are 
heavily domain-specific, this architecture is modular, lightweight, and adaptable to various types of 
input. The combination of ResNet50’s rich spatial feature extraction and a deep FFNN classifier allowed 
the model to capture subtle differences introduced by synthetic generation techniques. Furthermore, the 
training leveraged effective optimization strategies like AdamW, early stopping, learning rate 
scheduling, and regularization mechanisms such as dropout and L2 penalty, leading to improved 
generalization and reduced overfitting. 

Looking ahead, this work opens several avenues for enhancement. First, the model can be extended to 
handle deepfake video detection, where temporal dynamics across frames are crucial. Future models 
may also benefit from using more advanced architectures such as Vision Transformers (ViTs) or 
EfficientNet for improved accuracy and parameter efficiency. Additionally, web-based or mobile 
deployment can enable real-time fake content detection for public use. Another promising direction 
involves multi-modal analysis, where audio and image streams are jointly analyzed to detect 
inconsistencies that may not be visible in a single modality. Such improvements would contribute 
significantly to combating misinformation and enhancing trust in digital media. 
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