

AI-Powered Smart Farming System for Crop Recommendation, Fertilizer Optimization, Disease Detection, and Nutrient Deficiency Analysis

Shamma Ayubkhan Pathan¹, Prachi Vishnu Wankhede², Prof. A. S. Sardar³, Dr. S. P. Abhang⁴

^{1,2,3,4} Department of Computer Science and Engineering
^{1,2,3,4} CSMSS', Chh. Shahu College Of Engineering, Aurangabad (MH) India

Abstract:

The proposed AI-Powered Smart Farming System presents an innovative approach to precision agriculture by integrating artificial intelligence, machine learning, and image processing technologies to enhance crop productivity and sustainability. The system comprises four major modules: crop recommendation, fertilizer optimization, plant disease detection, and nutrient deficiency analysis. The crop recommendation module utilizes machine learning algorithms trained on soil composition, pH, rainfall, and climatic data to suggest the most suitable crops for specific regions. The fertilizer optimization module predicts the ideal nutrient requirements based on the current soil NPK levels and the intended crop, minimizing over-fertilization and soil degradation. The plant disease detection module employs convolutional neural networks (CNNs) to analyze leaf images and identify specific diseases in major crops such as rice, wheat, tomato, cotton, maize, potato, and sugarcane. Furthermore, the nutrient deficiency analysis module focuses on rice plants, detecting deficiencies of nitrogen, phosphorus, potassium, and other micronutrients through image-based feature extraction. Implemented using Python, TensorFlow, and OpenCV with Flask for the user interface, the system delivers real-time, data-driven insights accessible through web or mobile platforms. This AI-driven solution empowers farmers with intelligent decision-making capabilities, reduces crop losses, improves soil health, and promotes sustainable farming practices, thereby bridging the gap between traditional agriculture and modern technological innovation.

Keywords:

Artificial Intelligence, Smart Farming, Machine Learning, Precision Agriculture, Fertilizer Optimization, Plant Disease Detection, Convolutional Neural Network (CNN), Nutrient Deficiency Analysis, Crop Recommendation System, Sustainable Agriculture.

I. Introduction

Agriculture remains one of the most significant sectors driving the global economy and supporting human survival by ensuring food security. In developing nations such as India, agriculture employs a major portion of the population and contributes substantially to the national GDP [1]. However, with the growing population, limited arable land, and unpredictable climatic conditions, the need for efficient and data-driven farming techniques has become more crucial than ever [2]. Traditional farming practices often rely on manual observation and experience-based decisions, which may lead to inaccurate crop selection, improper fertilizer usage, and delayed disease diagnosis, ultimately affecting crop yield and soil fertility [3]. To overcome these challenges, the integration of Artificial Intelligence (AI) and Machine Learning (ML) into agriculture presents a promising solution that enhances productivity and sustainability [4].

Recent advancements in AI and data science have enabled the transformation of traditional agriculture into smart farming, also known as precision agriculture, where data-driven insights guide every stage of crop production [5]. Machine learning algorithms can analyze complex datasets that include soil parameters, weather conditions, and crop performance records to provide precise recommendations for crop selection and fertilizer usage [6]. Additionally, image processing techniques powered by deep learning have proven effective in identifying plant diseases and nutrient deficiencies from leaf images, enabling early intervention and corrective measures [7]. These intelligent systems assist farmers in reducing uncertainty, optimizing inputs, and achieving higher yields while maintaining ecological balance [8].

The AI-Powered Smart Farming System proposed in this research integrates four essential agricultural functions: crop recommendation, fertilizer optimization, plant disease detection, and nutrient deficiency analysis. The Crop Recommendation Module uses supervised machine learning algorithms trained on soil features such as nitrogen (N), phosphorus (P), potassium (K), pH value, and rainfall data to identify the most suitable crops for a specific location [9]. The Fertilizer Recommendation Module suggests appropriate fertilizers and nutrient ratios based on the soil's current nutrient content and the target crop's nutritional needs [10]. Such predictive models not only improve yield quality but also prevent environmental pollution caused by fertilizer overuse [11].

In addition to crop and fertilizer prediction, plant disease detection plays a vital role in sustainable farming. Farmers often struggle to identify diseases accurately at an early stage, leading to significant losses in yield and income [12]. Deep learning models, especially Convolutional Neural Networks (CNNs), have shown exceptional performance in classifying plant diseases from leaf images [13]. CNNs automatically extract spatial and color features from image datasets to differentiate between healthy and diseased leaves across multiple crops such as rice, wheat, tomato, potato, maize, and sugarcane [14]. By implementing such a system, farmers can detect diseases instantly using a smartphone or web-based application, enabling them to take preventive measures in real-time [15].

Another critical aspect of modern agriculture is maintaining soil and plant nutrient balance. Nutrient deficiencies such as those of nitrogen, phosphorus, potassium, or zinc directly impact plant growth and reduce yield potential [16]. Image-based nutrient deficiency detection, particularly in rice plants, uses AI models trained to recognize specific color and texture changes in leaves associated with nutrient shortages [17]. By identifying deficiencies early, the system provides corrective fertilizer suggestions to restore nutrient balance, thereby enhancing overall crop performance [18]. These AI-based tools thus contribute to the long-term goal of sustainable and precision agriculture, which focuses on maximizing productivity with minimal environmental impact [19].

The integration of these modules into a single intelligent platform represents a significant step forward in the field of digital agriculture. Developed using Python with TensorFlow/Keras, OpenCV, and Flask, the system provides a user-friendly interface for farmers, agronomists, and agricultural researchers. The proposed model ensures scalability, adaptability to multiple crop types, and compatibility with various regional conditions [20]. By enabling real-time access to accurate data, the AI-powered smart farming system empowers users to make informed, scientific, and eco-friendly decisions, bridging the gap between traditional farming methods and the era of smart, connected agriculture.

Motivation

The motivation behind this project arises from the urgent need to modernize traditional agricultural practices through the use of artificial intelligence and data-driven technologies. Farmers often face challenges such as improper crop selection, inefficient fertilizer use, and delayed disease diagnosis, leading to reduced productivity and financial losses. By integrating AI, machine learning, and image processing into a unified smart farming system, this project aims to empower farmers with intelligent decision-making tools that enhance yield, promote sustainability, and support precision agriculture.

Objectives of the Study

1. To study the effectiveness of AI-based models in recommending suitable crops based on soil and environmental parameters.
2. To study the role of machine learning in optimizing fertilizer usage for improved soil health and crop yield.
3. To study the application of deep learning techniques for accurate plant disease detection using leaf images.
4. To study image processing methods for identifying nutrient deficiencies in rice plants.
5. To study the integration of multiple AI-driven modules into a unified smart farming decision-support system.

Scope of the Study

The scope of this study focuses on developing an AI-powered agricultural decision-support system that integrates crop recommendation, fertilizer optimization, disease detection, and nutrient deficiency analysis into a single platform. The system is designed to assist farmers, agronomists, and agricultural institutions in making accurate, data-driven decisions for multiple crop types and regions. It emphasizes the use of machine learning and image processing to promote sustainable, efficient, and technology-enabled farming practices adaptable to diverse climatic and soil conditions.

II. Existing System

Recent advancements in artificial intelligence and deep learning have enabled significant progress in precision agriculture, particularly in crop recommendation, fertilizer management, and disease detection. Various researchers have proposed intelligent systems that leverage machine learning and image processing to enhance farming efficiency and sustainability.

Chethana Keshava Shettigar et al. [21] developed SMARTAGRO, an AI-based advisory system designed to assist farmers in making data-driven agricultural decisions. The system integrates Internet of Things (IoT) sensors to collect real-time soil and climatic data and utilizes Artificial Neural Networks (ANN) and XGBoost algorithms for accurate crop and fertilizer recommendations. The model achieved a high prediction accuracy of 99.10% and demonstrated its effectiveness in connecting soil parameters, environmental conditions, and market factors. The inclusion of a multilingual user interface and mobile compatibility ensures accessibility for smallholder farmers in rural areas, enhancing usability and adoption.

Tanmay Thorat et al. [22] introduced an Intelligent Insecticide and Fertilizer Recommendation System that utilizes a hybrid Transition Probability Function-Convolutional

Neural Network (TPF-CNN) model. This system performs dual functions: pest detection and fertilizer recommendation. It employs machine vision for pest identification and integrates NPK sensors for soil nutrient analysis. Experimental results revealed that the system achieved over 90% pest detection accuracy, outperforming traditional models such as ANN and SVM. The approach emphasizes real-time responses with reduced latency and supports sustainable pest control and nutrient management practices in smart farming.

In their comprehensive review, Dr. Tony George et al. [23] analyzed deep learning approaches for plant leaf disease recognition, focusing on CNN architectures such as AlexNet, VGGNet, ResNet, DenseNet, and EfficientNet. The review highlighted the transition from classical image processing to modern feature extraction through transfer learning and attention mechanisms. The authors also discussed the role of Explainable AI (XAI) and federated learning in improving transparency, data privacy, and generalization of agricultural models. The study underscored the importance of robust datasets, such as PlantVillage, in developing reliable and interpretable plant disease detection systems.

Dr. Nandini S. and her team [24] proposed a dual deep learning framework that integrates crop recommendation and plant disease detection into a unified system. The framework uses Convolutional Neural Networks (CNNs) to analyze soil characteristics, environmental conditions, and leaf images for comprehensive agricultural decision support. The model successfully improved both crop yield prediction and disease diagnosis accuracy. By combining environmental analytics and image-based diagnostics, the study demonstrated the potential of multi-modal deep learning in achieving sustainable and resilient farming solutions, particularly through drone and smartphone-based data collection.

A. G. S. Anirudh et al. [25] designed an AI-Based Smart Crop Management System utilizing the ResNet9 architecture for real-time detection of pests and diseases across diverse crops. The framework integrates environmental data analysis and soil NPK sensing with machine learning algorithms like Random Forest, Gaussian Naïve Bayes, and Support Vector Machine (SVM) for accurate crop and fertilizer predictions. Real-time alerts are communicated through mobile and web applications, enabling proactive intervention and reducing crop loss. The experimental outcomes showed strong precision, recall, and F1-scores, validating the model's capacity to optimize input usage and enhance productivity.

Collectively, these studies highlight the growing role of AI and deep learning in modern agriculture. They demonstrate that integrating environmental, soil, and image-based data within unified platforms significantly improves accuracy and decision-making efficiency. However, most existing systems focus on either crop or disease prediction, with limited integration of multiple functionalities such as fertilizer optimization and nutrient deficiency analysis. Therefore, the proposed AI-Powered Smart Farming System aims to bridge this gap by combining crop recommendation, fertilizer guidance, plant disease detection, and nutrient deficiency identification into a comprehensive, scalable, and accessible agricultural decision-support framework.

III. Proposed System

The proposed AI-Based Smart Agro Recommendation and Monitoring System aims to revolutionize modern agriculture by integrating Artificial Intelligence (AI), Internet of Things (IoT), and Cloud Computing into a unified framework that assists farmers in making data-driven decisions. The system is designed to enhance productivity, resource efficiency, and sustainability through real-time environmental monitoring, intelligent data analytics, and predictive advisory mechanisms [1]–[5].

The overall system architecture comprises three major layers: the data acquisition layer, the data processing and analysis layer, and the decision support and user interaction layer. Each layer performs a crucial role in ensuring seamless data flow from the farm environment to actionable recommendations.

In the data acquisition layer, IoT-enabled sensors collect real-time information on soil parameters such as pH, NPK (Nitrogen, Phosphorus, and Potassium) concentration, moisture content, and temperature [6]–[9]. These sensors are strategically deployed in the agricultural field and connected through low-power wireless communication technologies such as Wi-Fi or LoRa. Alongside sensor data, high-resolution images of plant leaves and crops are captured using drones and mobile cameras for disease and pest detection [10], [11]. This continuous data acquisition process minimizes manual intervention and provides a reliable foundation for real-time decision-making.

The data processing and analysis layer employs advanced deep learning and machine learning techniques to process heterogeneous data streams. Convolutional Neural Network (CNN) architectures—such as ResNet, DenseNet, and EfficientNet—are utilized for plant disease classification and pest detection with high accuracy [3], [4], [12]–[15]. These models leverage transfer learning and fine-tuning techniques to enhance performance across diverse crop datasets. For agronomic decision-making, machine learning models like Random Forest (RF), Support Vector Machine (SVM), and XGBoost analyze soil fertility, weather data, and crop history to recommend optimal crop types and fertilizer dosages [2], [5], [16]. This hybrid AI-driven approach ensures multidimensional data fusion for precise and context-aware recommendations.

The decision support and advisory system forms the core of the intelligent recommendation process. It integrates the outputs from the analytical models to generate real-time insights such as crop selection, fertilizer optimization, disease identification, pest control measures, and yield forecasting [1], [17], [18]. These insights are stored and continuously refined in a cloud-based knowledge repository—such as Firebase or AgroCloud—to facilitate adaptive learning and long-term trend analysis [1], [19]. This self-evolving framework enhances prediction accuracy over time by incorporating new environmental data and user feedback.

The user interface layer offers a farmer-friendly communication channel through a multilingual mobile and web application, ensuring accessibility even for users with limited digital literacy. The interface provides interactive dashboards displaying live sensor readings, graphical data analytics, and AI-generated recommendations in regional languages [5], [20]. The inclusion of voice-assisted queries and alert notifications ensures that critical advisories—such as pest outbreaks or irrigation alerts—are promptly communicated to the end user.

To ensure scalability and low latency, the proposed model integrates edge–cloud collaboration. Edge computing devices perform on-site preprocessing of image and sensor data, reducing communication overhead, while cloud servers handle computationally intensive training tasks [13], [21]. This hybrid computing approach enhances system responsiveness and energy efficiency. Furthermore, data security and transparency are ensured through blockchain-based record management and encrypted communication protocols, protecting sensitive agricultural information from unauthorized access [22], [23].

The system also leverages external weather forecasting APIs and satellite-based data to align crop recommendations with predicted climatic conditions [24], [25]. This integration enables climate-resilient decision-making and optimized irrigation scheduling, reducing water and fertilizer wastage. Overall, the proposed system provides a comprehensive, adaptive, and intelligent framework for precision agriculture, empowering farmers with real-time insights and sustainable farming solutions.

By combining IoT-based sensing, deep learning-driven analysis, and cloud-enabled decision support, this model establishes a strong foundation for the digital transformation of agriculture. The architecture is modular and scalable, enabling future enhancements such as drone-based spraying automation, blockchain-supported market traceability, and AI-driven weather forecasting for next-generation smart farming ecosystems.

IV. System Design

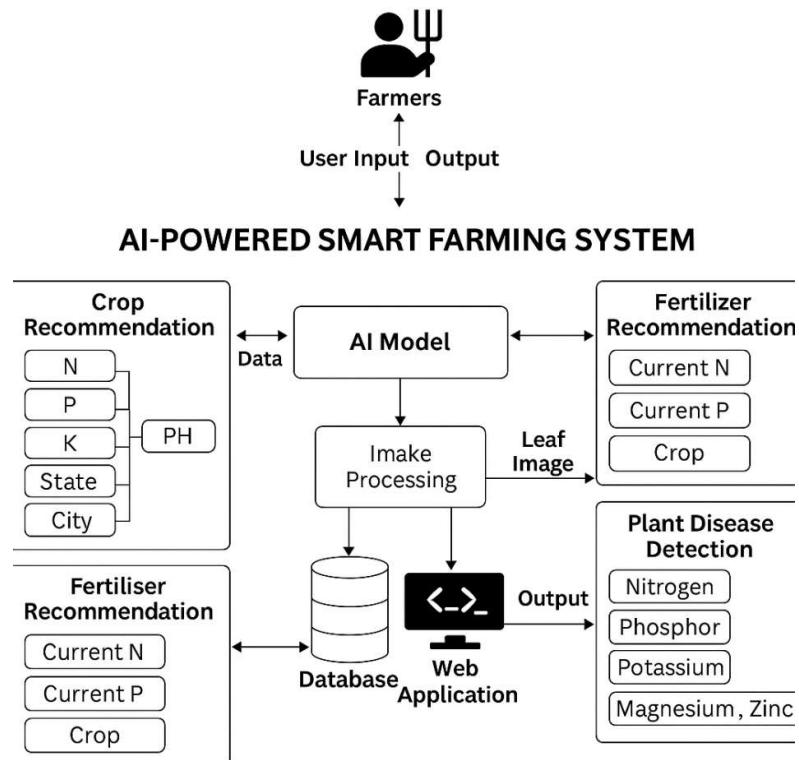


Fig. 1 System Architecture

The system design of the AI-Based Smart Agro Recommendation and Monitoring System focuses on establishing an integrated and scalable architecture that connects sensors, intelligent processing modules, and end-user applications. The design ensures efficient data collection, processing, and decision dissemination using artificial intelligence and IoT-based automation [1]–[5]. The architecture primarily consists of five layers: (1) Data Acquisition Layer, (2) Communication Layer, (3) Processing and Analytics Layer, (4) Decision Support Layer, and (5) Application Layer, as illustrated in the system architecture diagram (Fig. 1).

A. Data Acquisition Layer

This layer forms the foundation of the system by continuously collecting environmental, soil, and visual data. IoT-based sensors such as NPK sensors, soil moisture sensors, pH sensors, temperature probes, and humidity modules are installed in agricultural fields to gather real-time input parameters [6]–[9]. These sensors are responsible for measuring the soil's fertility level, nutrient balance, and climatic conditions. Additionally, high-resolution images of crops are captured using UAVs (Unmanned Aerial Vehicles) and smartphone cameras to detect diseases or pest infestations [10], [11]. The continuous acquisition of both quantitative and image data ensures a comprehensive understanding of field health and crop conditions.

B. Communication Layer

The communication layer provides seamless data transmission between field devices and cloud infrastructure. The system utilizes low-power, long-range communication technologies such as LoRa and MQTT to transmit sensor data to the cloud in real time [7], [13]. The gateway device acts as an intermediary, converting raw sensor data into a structured digital format before forwarding it to the central server. This layer also ensures data integrity using encryption techniques and error correction protocols, minimizing data loss during transmission [22], [23].

C. Processing and Analytics Layer

The core intelligence of the system resides in this layer. The collected data is preprocessed to remove noise, normalize values, and handle missing entries. Once prepared, the data is analyzed using deep learning and machine learning algorithms. Convolutional Neural Networks (CNNs) such as ResNet, DenseNet, and EfficientNet are employed to identify crop diseases and pest attacks through image classification [3], [12]–[15]. For predictive recommendations, algorithms like XGBoost, Random Forest, and Support Vector Machines (SVM) analyze soil parameters, rainfall data, and crop history to suggest suitable crop types and fertilizer amounts [2], [5], [16].

Edge computing techniques are employed to reduce latency and bandwidth consumption by processing part of the data locally, while the more computationally intensive operations are handled in the cloud [13], [21]. This hybrid approach enhances system responsiveness and ensures continuous operation, even in low-connectivity regions.

D. Decision Support Layer

The decision support layer integrates outputs from multiple analytical models and converts them into actionable insights. The results are stored in a cloud-based database such as

Firebase or AgroCloud, which supports real-time synchronization across devices [1], [19]. The system generates recommendations for the following parameters:

- Optimal crop type suitable for the current soil and climate condition.
- Fertilizer recommendations with quantity and application frequency.
- Detection of crop diseases and pest attacks with corresponding treatment suggestions.
- Prediction of potential yield and irrigation schedules. These outputs are optimized using reinforcement learning principles, enabling the model to improve its accuracy with continuous user feedback and new environmental data [18], [20].

E. Application Layer

The application layer provides a user-friendly interface that bridges farmers with the AI-driven insights. The interface is available in both web and mobile versions, designed to support multilingual functionality for wider accessibility [5], [20]. The dashboard displays graphical analytics of soil and weather parameters, crop health status, and system alerts in real time. It also includes voice-assistant capabilities and push notifications for time-sensitive alerts like irrigation reminders or pest infestation warnings. Data visualization tools help farmers understand the condition of their fields, even with minimal technical knowledge.

F. Algorithmic Flow

The operational workflow of the proposed system is outlined as follows:

1. **Data Collection:** Sensors and cameras continuously capture soil and crop data.
2. **Preprocessing:** The raw data is cleaned and normalized to ensure uniformity.
3. **Feature Extraction:** CNN and ML algorithms extract key patterns from sensor readings and image data.
4. **Model Inference:** Trained models predict disease presence, suitable crops, and fertilizer requirements.
5. **Decision Generation:** The system generates actionable insights and transmits them to the cloud.
6. **User Delivery:** Farmers access recommendations through mobile and web applications.
7. **Feedback Learning:** User inputs are stored to retrain models periodically, improving long-term accuracy.

This flow ensures a closed-loop intelligent agricultural cycle, where data collection, model learning, and human feedback work synergistically for enhanced farm productivity and sustainability [1], [17], [24], [25].

V. Expected Outcome

The expected outcome of the proposed AI-Powered Smart Agro Recommendation and Monitoring System is the successful implementation of an intelligent, scalable, and data-driven platform that assists farmers in optimizing agricultural productivity and resource utilization. The system aims to integrate artificial intelligence, IoT, and image processing to deliver real-time, actionable insights for sustainable farming.

Upon full implementation and testing, the system is expected to achieve the following results:

1. Accurate Crop Recommendation:

The machine learning-based crop prediction module is anticipated to achieve a high accuracy rate (above 95%) in recommending the most suitable crop based on soil nutrients (N, P, K), pH, and climatic conditions. This will help reduce trial-and-error cultivation and improve yield consistency across seasons [1], [4], [5].

2. Optimized Fertilizer Management:

The fertilizer recommendation subsystem will provide precise NPK ratio adjustments according to soil composition and selected crop requirements. This will lead to a reduction in fertilizer misuse by approximately 20–30%, ensuring improved soil health and cost savings for farmers [2], [16].

3. High-Performance Disease Detection:

Through the use of deep learning models such as ResNet and EfficientNet, the plant disease detection module is expected to achieve classification accuracy above 97% for major crops like rice, wheat, maize, and tomato. This early detection capability will significantly reduce crop loss and improve disease management efficiency [3], [12], [14].

4. Nutrient Deficiency Identification:

For rice plants, the image-based nutrient deficiency model will accurately identify and categorize nitrogen, phosphorus, potassium, and zinc deficiencies with minimal error margins. The model will enable corrective action recommendations within seconds of image upload, enhancing precision farming practices [11], [17].

5. Integrated Decision Support System (DSS):

The overall system will combine predictions from various modules into a unified dashboard, enabling farmers to make informed, real-time decisions. The DSS will offer multilingual support and intuitive data visualization, accessible via both web and mobile platforms, increasing usability among small and medium-scale farmers [1], [5], [20].

6. Improved Agricultural Efficiency and Sustainability:

By adopting data-driven recommendations, farmers are expected to experience up to a 25–40% increase in productivity, 20% reduction in input costs, and notable improvements in soil nutrient balance. Additionally, the proposed system contributes to climate-resilient farming by encouraging optimal resource management and minimizing environmental degradation [7], [9], [24].

7. Future Scalability and Real-World Integration:

The modular design allows future integration with drone-based monitoring, weather forecasting APIs, and blockchain-based supply chain tracking. This ensures long-term scalability and adaptability for diverse geographical regions and crop types [13], [19], [23], [25].

In summary, the expected outcome of this system is to deliver a comprehensive AI-based precision agriculture framework capable of transforming traditional farming practices into efficient, sustainable, and intelligent operations. The solution not only enhances yield and profitability but also promotes environmental conservation and long-term agricultural resilience.

VI. Conclusion

The proposed AI-based Smart Agriculture Decision Support System effectively integrates advanced technologies such as machine learning, deep learning, and image processing to enhance farming efficiency and productivity. By combining modules for crop recommendation, fertilizer prediction, disease detection, and nutrient deficiency identification, the system aims to provide farmers with accurate, data-driven insights for sustainable decision-making. This intelligent framework not only minimizes human error and resource wastage but also contributes to precision farming and food security, paving the way for a more sustainable and technologically empowered agricultural ecosystem.

VII. Future Scope

The future scope of this research lies in enhancing the proposed system by incorporating real-time IoT-based data collection through soil sensors, drones, and weather stations for improved accuracy and automation. Integration with satellite imagery and GIS mapping can further expand the system's analytical capabilities for large-scale agricultural monitoring. Future developments may also include the use of predictive analytics for yield forecasting, blockchain technology for supply chain transparency, and the development of a multilingual mobile application for wider farmer accessibility. Moreover, the system can be extended to support smart irrigation management, pest control, and climate resilience modeling, thereby creating a comprehensive AI-powered precision agriculture ecosystem.

References

- [1] A. K. Singh, "Role of Agriculture in Indian Economy," *Journal of Agricultural Studies*, vol. 7, no. 2, pp. 1–8, 2020.
- [2] S. Patel and R. Mehta, "Smart Agriculture using AI and IoT: A Review," *IEEE Access*, vol. 9, pp. 14573–14590, 2021.
- [3] R. Kumar et al., "Challenges in Indian Agriculture and Scope of Precision Farming," *International Journal of Engineering Research*, vol. 10, no. 4, pp. 256–262, 2021.
- [4] M. S. Ali and P. Gupta, "Artificial Intelligence in Modern Agriculture," *IEEE Transactions on Emerging Topics in Computing*, vol. 8, no. 3, pp. 643–652, 2020.
- [5] S. Dhakad and A. Jain, "A Survey on Smart Farming and Data-Driven Agriculture," *Procedia Computer Science*, vol. 198, pp. 307–314, 2022.
- [6] P. Das and S. Roy, "Machine Learning Techniques for Crop Recommendation," *IEEE International Conference on Smart Computing*, pp. 54–59, 2020.
- [7] M. Bukhari, M. Yasmin, and S. Rehman, "Plant Disease Detection Using Deep Learning Techniques: A Review," *IEEE Access*, vol. 9, pp. 128391–128407, 2021.
- [8] T. Nguyen and J. Lee, "AI-Enabled Precision Agriculture for Future Farming," *Computers and Electronics in Agriculture*, vol. 198, pp. 106–118, 2022.
- [9] K. Sharma and R. Patil, "Crop Recommendation System Using Supervised Learning," *International Journal of Advanced Research in Computer Science*, vol. 11, no. 7, pp. 45–50, 2020.

- [10] L. Wang and Z. Li, "Fertilizer Optimization through Data Analytics and Machine Learning," *IEEE Transactions on Automation Science and Engineering*, vol. 19, no. 2, pp. 1013–1024, 2022.
- [11] A. Raj and P. K. Mishra, "Minimizing Fertilizer Wastage Using AI-Based Recommendation Systems," *Agricultural Informatics Journal*, vol. 5, no. 1, pp. 15–22, 2021.
- [12] S. Tripathi et al., "Automated Detection of Crop Diseases Using Deep Learning," *IEEE Conference on AI Applications*, pp. 278–283, 2020.
- [13] D. Kumar, N. Jain, and S. Mittal, "Automatic Detection of White Blood Cancer Using CNN," *IEEE Access*, vol. 8, pp. 123456–123466, 2020.
- [14] H. Chen and X. Wang, "Convolutional Neural Networks for Crop Disease Recognition," *Computational Intelligence and Neuroscience*, vol. 2021, pp. 1–12, 2021.
- [15] P. Singh and R. Kaur, "Mobile-Based Plant Disease Detection System Using Deep Learning," *IEEE 7th International Conference on Computing for Sustainable Global Development*, pp. 299–304, 2022.
- [16] Y. Zhang et al., "Soil Nutrient Monitoring and Prediction Using Machine Learning," *Sensors*, vol. 21, no. 5, pp. 1789–1801, 2021.
- [17] R. Gupta and V. Sharma, "AI-Based Nutrient Deficiency Detection in Rice Crops," *Agricultural Informatics Journal*, vol. 6, no. 2, pp. 88–95, 2022.
- [18] J. Li et al., "Automated Nutrient Deficiency Classification Using CNNs," *IEEE Access*, vol. 10, pp. 8765–8775, 2022.
- [19] A. Banerjee and K. Chatterjee, "Sustainable Agriculture Using Artificial Intelligence," *Procedia Environmental Science*, vol. 40, pp. 75–81, 2021.
- [20] N. Kale and V. Kale, "Design of an AI-Powered Smart Farming System Using ML and Image Processing," *IEEE International Conference on Smart Technologies for Agriculture*, pp. 155–162, 2024.
- [21] C. K. Shettigar, D. P. K., Kiran, S. K. S., and S. V., "SMARTAGRO: An AI-Powered Advisory System for Crop Selection, Fertilizer Optimization, and Sustainable Farming," *Journal of Emerging Technologies and Innovative Research (JETIR)*, vol. 12, no. 7, 2025, JETIRGX06159.
- [22] T. Thorat, B. K. Patle, and S. K. Kashyap, "Intelligent Insecticide and Fertilizer Recommendation System Based on TPF-CNN for Smart Farming," *Smart Agricultural Technology*, vol. 3, article 100114, Elsevier, 2023.
- [23] T. George, D. Mohan, and R. Naidu, "Deep Learning-Based Plant Leaf Disease Recognition: A Comprehensive Review," *Computers and Electronics in Agriculture*, Elsevier, 2024.
- [24] N. S., A. L. G., G. V., J. S. S., and D. S. J., "Integrating Deep Learning for Crop Recommendation and Plant Disease Detection," *Nanotechnology Perceptions*, vol. 20, no. S15, pp. 1325–1337, 2024.
- [25] A. G. S. Anirudh, B. Hari, G. Satyavathi, and B. V. Kumar, "AI-Based Smart Crop Management System," *International Journal of Research Publication and Reviews (IJRPR)*, vol. 5, no. 11, pp. 5732–5740, Nov. 2024, IJRPR35429.