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Abstract 

Real-time monitoring of quantum states is essential for stabilizing qubits used in sensing, 
communication, and fault-tolerant computation. Classical Kalman filtering is well-suited for 
linear Gaussian systems but struggles with nonlinear quantum evolution and measurement-
induced backaction. This paper presents a comparative study of the Kalman Filter (KF) and 
the Extended Kalman Filter (EKF) when applied to single-qubit state estimation under weak, 
continuous measurements. Using a Bloch-sphere state-space model that incorporates 
decoherence and measurement inefficiency, the performance of both filters is analysed in 
terms of accuracy, physical state preservation, numerical stability, and computational load. 
Simulation results show that KF reduces measurement noise variance but fails to track 
nonlinear dynamics, whereas EKF achieves ~35–45% improvement in root-mean-square 
error by incorporating Jacobian-based linearization. The study highlights operating regimes 
where KF suffices and cases where EKF becomes essential for quantum feedback 
applications. 

Keywords: Quantum filtering, Kalman filter, EKF, weak measurement, qubit estimation, 
Bloch sphere. 
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1. Introduction 

Quantum computing relies on accurate, real-time knowledge of qubit states. Unlike 
classical systems, measurements disturb the quantum state, making filtering essential for 
inferring hidden state components. Linear filters (KF) offer fast and simple estimation but 
cannot deal with nonlinear Bloch-sphere dynamics, decoherence, and non-Gaussian back-
action. EKF partly resolves this by linearizing around the current estimate [11]. This paper 
compares KF and EKF for a standard weak Z-basis measurement model (Fig.1). 

2. Mathematical Model for a Qubit 

A single qubit evolving under coherent dynamics and weak measurement can be 
represented using a reduced Bloch vector [1], [2]: 

𝑥௞ =   [〈𝜎௫〉, 〈𝜎௭〉]்   (1) 

where ⟨𝜎௫⟩and ⟨𝜎௭⟩ denote the expectation values of the Pauli operators in the 𝑋– and 𝑍–
directions, respectively. The reduced form is sufficient when the measurement process is 
primarily sensitive to the 𝑍-quadrature [3]. 

2.1 State Dynamics 

The qubit evolution in discrete time can be expressed as 

𝑥௞ାଵ = 𝑓(𝑥௞) + 𝑤௞     (2) 
 

Where, 

 𝑓(⋅)models Hamiltonian-driven rotation and dissipative processes, 
 𝑤௞ ∼ 𝒩(0, 𝑄)captures stochastic fluctuations due to decoherence, dominated by the 

relaxation and dephasing constants 𝑇ଵand 𝑇ଶ. 

For instance, under a weakly driven Rabi Hamiltonian [4],[5], 

𝑓(𝑥௞) ≈ ൤
(1 − Δ𝑡/𝑇ଶ)ௗ⟨𝜎௫⟩௞ − ΩΔ𝑡ௗ⟨𝜎௭⟩௞

(1 − Δ𝑡/𝑇ଵ)ௗ⟨𝜎௭⟩௞ + ΩΔ𝑡ௗ⟨𝜎௫⟩௞
൨       (3) 

2.2 Measurement Model 

Continuous weak homodyne readout provides a noisy measurement related to the 𝑍-
component [6]: 

𝑧௞ = ℎ(𝑥௞) + 𝑣௞ ,      (4) 

with 

 ℎ(𝑥௞) = ⟨𝜎௭⟩௞ for a linearized dispersive readout, 
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 𝑣௞ ∼ 𝒩(0, 𝑅)  representing detector noise and inefficiencies. 

In practical superconducting qubit hardware, the actual measurement model is slightly 
nonlinear, 

ℎ(𝑥௞) = 𝛼 tanh (𝛽⟨𝜎௭⟩௞)   (5) 

where 𝛼  captures the readout amplitude and 𝛽encodes saturation of the measurement chain. 

 

 

     

Fig.1: State space model 

2.3 Linear Approximation for KF 

The classical Kalman Filter assumes a linear state-space system[6], [7]: 

𝑥௞ାଵ = 𝐹𝑥௞ + 𝑤௞ , 𝑧௞ = 𝐻𝑥௞ + 𝑣௞ ,  (6) 
  

Where 

𝐹 =
ப௙

ப௫
, 𝐻 =

ப௛

ப௫
                                       (7) 

 

are treated as constant system and measurement matrices. This assumption is accurate only 
when the system operates close to a known working point and the nonlinear terms are weak. 

2.4 EKF Linearization 

The Extended Kalman Filter (EKF) relaxes the linearity requirement by recomputing 
the Jacobians at every iteration [8],[9]: 

State Jacobian:  𝐹௞ =  
డ௛

డ௫
ቚ
௫ୀ௫ො ೖ|ೖషభ

 

Measurement Jacobian:      𝐻௞ =  
డ௛

డ௫
ቚ
௫ୀ௫ො ೖ|ೖషభ

 

These Jacobians approximate the nonlinear functions. 𝑓(⋅)and ℎ(⋅)locally around the 
current predicted state 𝑥ො௞∣௞ିଵ. 

This allows EKF to track nonlinear Bloch-sphere trajectories more accurately than 
KF while retaining closed-form Gaussian updates (Fig.2). 

State Model  
𝑥௞ାଵ = 𝑓(𝑥௞) + 𝑤௞ 

Measurement  
𝑧௞ = ℎ(𝑥௞) + 𝑣௞ 
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  Fig.2: KF-EKF Block diagram 

3. KF vs EKF: Algorithmic Summary 

The classical Kalman Filter (KF) is optimal for linear, Gaussian systems and remains 
computationally efficient, making it attractive for FPGA or microcontroller-based 
implementations. It performs reliably near a fixed operating point where system nonlinearities 
are minimal; however, its accuracy deteriorates in the presence of nonlinear quantum 
dynamics such as large-angle Bloch rotations. KF may also violate the Bloch-ball constraint 
∣r∣ ≤ 1 unless explicit corrections are applied, limiting its suitability for realistic qubit 
evolution. In contrast, the Extended Kalman Filter (EKF) incorporates first-order nonlinear 
effects by recalculating Jacobian matrices of both the state and measurement models [10]. 
This enables EKF to handle moderate nonlinearities in Hamiltonian dynamics and dispersive 
readout, typically achieving a 35–45% RMSE improvement over KF while better preserving 
the physical validity of the estimated quantum state. Although EKF incurs higher 
computational overhead and may suffer if the initial estimate is inaccurate, it remains the 
preferred choice in practical superconducting qubit platforms where nonlinearity and 
decoherence are unavoidable. 

 

4. Results & Discussion 

To evaluate the performance of KF and EKF under weak continuous readout, 
simulations were carried out using a driven single-qubit system subject to realistic 
decoherence (T₁, T₂) and measurement inefficiency. The estimation accuracy was quantified 
using the root-mean-square error (RMSE) of the Bloch-vector components. Table 1 
summarizes the comparative performance. Fig. 3 shows the KF vs EKF - state estimation 
accuracy. 

Table 1. Performance Comparison of KF and EKF under Weak Measurement 

Method RMSE Improvement Handles Nonlinearity 

KF ~ 40% over raw data poor 

EKF 35- 45% over KF good 

 

Kalman Filter 
Linear Dynamics 

Fast, Low cost 

Extended Kalman Filter 
Jacobian Linearization 
Handles Nonlinearity 

Linear Dynamics 
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4.1 Interpretation of Results 

The classical Kalman Filter provides a substantial reduction in measurement noise, primarily 
due to its optimality under linear-Gaussian assumptions. However, the qubit’s dynamics, 
particularly under continuous weak measurement, are inherently nonlinear. Because of this, 
KF relies heavily on the linearized model, causing two major limitations: 

1. Loss of Accuracy During Strong Rotations:  
When the qubit undergoes large-angle Hamiltonian evolution, the KF tends to 
underestimate curvature in the Bloch trajectory, resulting in biased estimates. 

2. Bloch-Ball Inconsistency:  
KF often produces estimates slightly outside the physically valid region ∣r∣ ≤ 1, 
particularly when the signal-to-noise ratio is low. 

In contrast, the EKF demonstrates superior performance. By recalculating the Jacobians at 
each filtering step, EKF adapts to instantaneous curvature in the system dynamics. This 
allows it to: 

 capture nonlinear Bloch-sphere motion more accurately, 
 maintain correct coupling between ⟨σx⟩ and ⟨σz⟩, 
 respect physicality constraints through better covariance propagation, 
 reconstruct the unmeasured ⟨σx⟩ component more reliably from the process model. 

 

Fig. 3: KF vs EKF – state estimation accuracy 

Key Observations 

 KF performs well only when nonlinear effects are weak or when the qubit evolves 
near a fixed operating point. 
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 EKF reconstructs hidden components such as ⟨σx⟩ with significantly higher fidelity, 
benefiting from local linearization of both dynamics and measurement. 

 KF frequently violates physical constraints, whereas EKF produces estimates that 
remain within or close to the Bloch ball. 

 EKF’s performance margin increases with measurement nonlinearity, showing its 
advantage in practical superconducting and dispersive readout systems. 

These observations confirm that EKF provides a more robust framework for realistic 
quantum-state monitoring, especially in regimes where measurement back-action and 
nonlinearity are significant. 

5. Conclusion 

This study provides a detailed comparison between the Kalman Filter and the Extended 
Kalman Filter for real-time qubit state estimation under weak continuous measurement. While 
the classical KF offers low computational overhead and moderate noise suppression, it is 
fundamentally limited by its linear modelling assumptions. As a result, it underperforms in 
nonlinear quantum environments and may violate physical constraints on the qubit state. 

The EKF, through Jacobian-based linearization, consistently outperforms KF by accurately 
capturing nonlinear Bloch-sphere dynamics, preserving physical validity, and providing 
substantial improvements in estimating hidden state components. These advantages make 
EKF significantly more suitable for experimental quantum systems involving time-varying 
Hamiltonians, nonlinear dispersive readouts, and decoherence processes. 
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