GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

SMART TRAFFIC MANAGEMENT SYSTEM FOR SMART CITY

Dr. Vasanthamma H' , “T Karthik Varma2, Kartik S*, Mohammed Shahezan* Khaja
Moinuddin®
Professor, CS-AIML Department, Proudhadevaraya Institute of Technology, Hosapete,
2343 Students, CS-AIML Department, Proudhadevaraya Institute of Technology, Hosapete'

Abstract

Traffic congestion and delays at intersections are major problems in rapidly growing cities.
Conventional fixed-time signals do not adapt to real-time traffic density and cannot provide fast
clearance for emergency vehicles. This paper presents a smart traffic management system for a smart
city intersection using computer vision, YOLO-based vehicle detection, and adaptive signal timing.
Live camera feeds are processed using OpenCV and a trained YOLO model to detect, classify, and
count vehicles on each lane. A weighted density score is computed to represent congestion
considering different vehicle classes, and the green time is dynamically allocated based on the
computed density. The system also detects ambulances and provides priority by overriding the normal
timing to create an emergency clearance path. The prototype integrates Raspberry Pi, Arduino Mega
2560, and a desktop system for monitoring and control, and includes a user interface for displaying
vehicle counts and allotted time. Simulation and sample real-road experiments demonstrate improved
adaptability of signal timing under varying traffic loads and faster response for emergency vehicles.

Keywords: Smart city; Smart traffic management; YOLO; OpenCV; Raspberry Pi; Arduino Mega
2560; Emergency vehicle priority

1. Introduction

Urban areas such as Mumbai and Bangalore have experienced rapid growth in population and
vehicle usage, which leads to heavy traffic congestion at intersections and increased travel time.
Traditional traffic signal systems usually operate with a fixed timing plan, and the signal duration is
not adjusted according to real-time traffic conditions, which results in inefficiencies during peak and
non-peak hours.

A smart traffic management system aims to reduce congestion by continuously estimating traffic
density and dynamically allocating green time to lanes with higher demand. With the availability of
low-cost cameras and edge computing, computer vision based traffic monitoring can replace or
complement electronic sensors that are often affected by installation cost, maintenance, and
environmental conditions.

In a smart city context, traffic management also requires priority handling for emergency vehicles
such as ambulances. Delays in ambulance movement can be life-threatening; therefore, an automated
mechanism to detect an emergency vehicle and provide immediate clearance at the junction is
required. This work combines YOLO-based vehicle detection and classification, density-based
adaptive signal timing, and ambulance priority to support smart city traffic control.

2. Literature Survey

Several approaches have been proposed for adaptive traffic signal control using image processing
and intelligent decision methods. Khushi (2019) proposed smart traffic light control using video

VOLUME 11 ISSUE 12 2025 PAGE NO: 400



GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

processing, where live feed is processed and dynamic timing improves traffic flow compared to fixed
timing, but wide deployment can be expensive when additional infrastructure is required. Vogel et al.
(2019) presented a camera-based approach combined with fuzzy logic controllers to optimize signal
timing and extend green phases under low traffic density conditions.

Ranjith Soman (2020) proposed traffic light control and violation detection using image processing
with ANN and fuzzy control, where grayscale conversion, segmentation, and classification are used
to estimate traffic conditions and set timers. Recent deep learning based methods, especially one-stage
object detectors such as YOLO, provide robust vehicle detection under varying illumination and
occlusions and can be integrated with edge devices for real-time operation. Building on these works,
the proposed system uses a trained YOLO model to detect vehicles and emergency vehicles and
applies a weighted density-based timing strategy for adaptive control.

3. Materials and Methods

3.1. System Architecture

The proposed system uses camera feeds from four approaches of an intersection. Each camera view
is processed to detect vehicles and estimate lane-wise traffic density. Raspberry Pi units can be used
for capturing and pre-processing the lane images, while an Arduino Mega 2560 is used for interfacing
with signal lights and auxiliary display units. The core detection and timing computation is performed
using a trained YOLO model and image processing pipeline.

I Image from camera I.I Ilmage from camera ZI IInge from camera 3 I Ilzge from camera 4'

Software Computation

| Raspberry Pil II Raspberry Pi2 II Raspberry Pi3 ” Raspberry Pi 4 I

Camera Image Count of Identification " Timing
{Capturing Processing | venicles of

» for
Arduino Mega images of Lane) Vehicles traffic lights

Ad

Image Processing

Traffic Signal

Signal is Set

Figure 1. System architecture and software computation pipeline: (a) Multi-camera Raspberry Pi + Arduino
Mega integration, (b) Software computation for adaptive signal timing.

3.2. Vehicle Detection and Classification

Vehicle detection and classification are performed using Ultralytics YOLO with a trained model
file (best.pt). The implementation reads video frames, applies region-of-interest (ROI) areas for each
lane, and runs inference to detect objects. Detected classes include common road vehicles and special
classes such as ambulance and police car. The custom class list used in the software contains 21
classes, including car, bus, truck, motorbike, auto rickshaw, and ambulance.

3.3. Density-Based Signal Timing

For each lane, the system counts the detected vehicles and computes a weighted density score.
Weights are assigned to vehicle classes to represent their relative road occupancy and impact on
congestion. The green time is then allocated proportionally to the lane density while maintaining
minimum timing constraints for safety.

VOLUME 11 ISSUE 12 2025 PAGE NO: 401



GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

Vehicle class Weight (w)
ambulance 1.1
auto rickshaw 1.5
bicycle 1.6
bus 2.0
car 1.0
minivan 2.0
motorbike 0.8
pickup 2.0
three wheelers -CNG- 1.5
truck 2.5
van 1.1

Table 1. Vehicle class weights used in density computation.

The lane density score is computed as:
=X c(wcexn{lc}) (1)

The green time allocation for lane 1 is computed by normalizing the density score:
T min+ (D 1/X jD j) x(T total — 4xT min) (2)

3.4. Emergency Vehicle Priority

Emergency vehicle detection is achieved by identifying the ambulance class in the lane ROI. When
an ambulance is detected in a specific lane, the system overrides the normal density-based timing and
allocates immediate green time to clear the ambulance path while stopping the remaining lanes. After

the emergency vehicle passes, the system resumes adaptive timing based on updated density.
bulance detected in lane k — set lane k = GREEN, others = RED (3)

3.5. Implementation Details

The software implementation is developed in Python and uses OpenCV for image processing,
Ultralytics YOLO for detection, and a desktop user interface for monitoring. The inference package
includes dependencies such as opencv-python, pandas, ultralytics, pyautogui, customtkinter, and
pygame. The model training and dataset preparation package is organized around a YOLOv5/PyTorch
workflow (hardware package) to generate the trained weight file used during inference. The project
can be executed on a desktop system (Intel 13/i5 or higher) and also supports edge deployment using
Raspberry Pi for camera interfacing.

Table 2. System requirements for prototype implementation.

Component Specification

Processor Intel i3/i5 or higher (3.6-3.7 GHz base clock)

Storage 500 GB hard disk or more

Memory RAM suitable for image processing (4 GB or higher
recommended)

Cameras Traffic junction cameras / lane cameras for live feed

Controller Arduino Mega 2560

Edge device Raspberry Pi

Display LCD display / monitor (HDMI to D-type converter if
needed)

Signal output Signal light (LED red/yellow/green) and regulated
power supply

Software Windows 11 /Raspberry Pi OS; Python; OpenCV;
YOLO (Ultralytics)

VOLUME 11 ISSUE 12 2025 PAGE NO: 402



GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

4. Results and Discussion

The system was tested using simulation and sample real-road traffic videos. The detector identifies
multiple vehicle classes and continuously updates lane-wise counts. Based on the computed density,
the green signal is assigned to the lane with higher demand and the timing is adjusted dynamically to
reduce waiting time and congestion.

[

Figure 2. Density-based signal timing in intersection simulation: (a) t =76s, (b) t = 158 s.

camera continuously monitors all four lanes at the intersection. Then system counts the number of
vehicles in each lane and identify where the traffic is the more. The lane with the higher traffic is then
given the green signal, while the other lanes are held on red light. This way, the traffic light adapts in
the real time to reduce waiting time and ease congestion.

Table 3. Example green time allocation using Eq. (2) (T _total =120s, T_min =10 s).

Lane Density score (D _1) Allocated green time (s)
Lane 1 30 37
Lane 2 47 53
Lane 3 11 20
Lane 4 0 10

Emergency vehicle priority was evaluated by detecting the ambulance class in a lane and triggering
a clearance mode. In this mode, the system displays the ambulance lane as GO and sets other lanes to
STOP, with the allotted time focused on clearing the ambulance path. After clearance, normal adaptive
operation resumes.

o
AMBULANCE
Tobd Nk o el 7

Taae At s

Figure 3. Vehicle detection output and user interface showing ambulance priority.

VOLUME 11 ISSUE 12 2025 PAGE NO: 403



GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

The prototype demonstrates that computer vision and deep learning can support real-time traffic
density estimation without installing intrusive road sensors. The weighted density strategy helps to
represent mixed traffic conditions, and the emergency override improves responsiveness for
ambulance movement at the junction.

4.1 Prototype Setup Snapshots

Figure 4. Prototype and testbed setup: (a) multi-monitor system monitoring, (b) physical junction model with
sensing and control.

A simulation model is used to detect an ambulance from the camera view. The detection algorithm
identifies the vehicle as an ambulance and displays a confidence score beside it. Here, the value 0.84
represents how sure the model is that the detected vehicle is indeed an ambulance. Our smart-city
traffic model is shown with four intersecting roads, traffic lights, and a central camera unit. The
camera keeps watching all the approaches and checks every vehicle that stops at the signal.

The LCD screen shows the live count (for example, 3 vehicles in one lane and 4 in another), while
the small signal beside it indicates the current light status. Each counter is connected to a different
road at the junction,

giving real-time vehicle counts that the smart traffic system uses to decide which signal should turn
green

&
AMELLAMCE DETECT IR

EMERGENCY . - - - e | IH ROAD 1 '

Figure 5. LCD alerts for emergency handling: (a) EMERGENCY display, (b) AMBULANCE DETECT IN
ROAD 1.

VOLUME 11 ISSUE 12 2025 PAGE NO: 404



GRADIVA REVIEW JOURNAL ISSN NO : 0363-8057

The LCD display shows the message “EMERGENCY”, indicating that an emergency vehicle has
been detected on one of the roads. Once the camera identifies an ambulance or fire engine, the
controller sends a signal to this unit, which updates the message and alerts the traffic signal beside it.
This notification helps the system give immediate priority to the emergency vehicle at the junction.

The LCD clearly displays the message “AMBULANCE DETECT IN ROAD 1.” This means the
system has identified an ambulance on Road 1 and flagged it as an emergency. Based on this detection,
the controller will give priority to Road 1 by turning its signal green so the ambulance can pass
quickly. The detection simulation of vehicle has identified a fire engine from the camera view. The

vehicle is highlight with a bounding box and label as “fire-engine” along with a confidence score of
0.69.

5. Conclusion

This paper presented a smart traffic management system using YOLO-based vehicle detection and
adaptive signal timing. The system estimates lane-wise density from real-time camera feeds and
allocates green time using a weighted density score, which helps to represent mixed traffic conditions.
The ambulance detection and priority mechanism provides faster clearance for emergency vehicles
by overriding the normal signal cycle when required.

The prototype integrates a practical hardware stack (Raspberry Pi, Arduino Mega 2560, cameras,
and signal lights) with a Python-based software pipeline using OpenCV and Ultralytics YOLO.
Results from simulation and sample real-road videos show that adaptive allocation improves
responsiveness under varying traffic loads and supports emergency clearance. Future work can
include multi-junction coordination, cloud-based analytics, and integration with other smart city
services.

Acknowledgments
The authors thank Dr. Vasanthamma H (M.Tech., Ph.D.) and the Department of CSE-AIML,
Proudhadevaraya Institute of Technology, Hospete, for guidance and support throughout the project
work.

The authors would like to acknowledge the support and guidance provided by the project guide and the
department, and the facilities provided by the institution for carrying out the prototype implementation

References

[1] TomTom.com, “TomTom global traffic index,” 2019. [Online]. Available:
https://www.tomtom.com/en_gb/traffic-index/ranking/

[2] K. Khushi, “Smart control of traffic light system using image processing,” in Proc. Int. Conf. Curr. Trends
Comput.,, Electr.,, Electron. Commun. (CTCEEC), Mysore, India, 2017, pp. 99-103,
doi:10.1109/CTCEEC.2017.8454966.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 779—788.

[6] J. Redmon and A. Farhadi, “YOLOvV3: An incremental improvement,” arXiv preprint arXiv:1804.02767, Apr.
2018. [Online]. Available: https://arxiv.org/abs/1804.02767

[7]J. Tao, H. Wang, X. Zhang, X. Li, and H. Yang, “An object detection system based on YOLO in traffic scenes,”
in Proc. 6th Int. Conf. Comput. Sci. Netw. Technol. (ICCSNT), Dec. 2017, pp. 315-319.

[9] Ultralytics, “YOLO: Real-time object detection,” [Online]. Available: https://github.com/ultralytics/ultralytics

VOLUME 11 ISSUE 12 2025 PAGE NO: 405



