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Abstract: 
Forest fires pose significant threats to biodiversity, environmental stability, and human safety. 
Traditional detection approaches suffer from delayed response and limited spatial coverage. 
This paper proposes a resilient IoT-enabled Wireless Sensor Network (WSN) architecture 
designed for real-time and energy-efficient forest fire detection. The system integrates multi-
parameter sensor nodes, cluster-based routing, long-range communication, and cloud-based 
analytics to ensure rapid and reliable fire identification. Experimental evaluation 
demonstrates improved detection accuracy, reduced latency, and enhanced network lifetime 
compared to conventional systems. The proposed architecture is scalable and suitable for 
deployment in remote and harsh forest environments. 
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I. INTRODUCTION: 
Forest fire incidents have increased globally due to rising temperatures, prolonged dry 
seasons, and extreme climatic variations. Early detection is essential to minimize ecological 
loss, safeguard wildlife habitats, and support forest management authorities. Traditional fire 
detection systems—such as satellite imaging, watchtowers, or manual patrolling—often fail 
to provide timely alerts and require extensive resources. 
Recent advancements in the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) 
have revolutionized environmental monitoring by enabling real-time sensing and intelligent 
data acquisition. However, issues such as limited node lifetime, unreliable communication 
links, and environmental interference still hinder efficient forest fire detection. 
To address these challenges, we propose a resilient IoT–WSN architecture that integrates 
multi-sensor nodes, optimized routing protocols, long-range wireless communication, and 
cloud-based analytics to support robust and energy-efficient forest fire prediction and 
monitoring. 
 
II. RELATED WORK: 
Numerous studies have explored IoT- and WSN-based approaches for environmental 
monitoring and hazard detection. IoT systems equipped with low-power sensors have shown 
effectiveness in collecting distributed environmental data; however, most architectures still 
suffer from communication delays, limited energy efficiency, and poor fault tolerance. 
Lightweight protocols such as MQTT and CoAP have been used to enhance data 
transmission efficiency, but their performance degrades under dense forest conditions due to 
interference and long-distance coverage constraints. 
WSN-based forest fire detection systems have been widely investigated using cluster-based 
or multi-hop routing protocols. Protocols such as LEACH, PEGASIS, and TEEN offer 
improved energy distribution but exhibit instability when node failures occur or when 
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network topology changes dynamically. In addition, conventional WSN deployments lack 
robust mechanisms to maintain connectivity in harsh environmental conditions. 
Machine learning-based fire detection methods have been introduced to improve prediction 
accuracy, utilizing algorithms such as SVM, Random Forest, and Decision Trees. However, 
these methods typically require high computational power or large datasets, making them 
difficult to deploy on constrained sensor nodes. Image-based fire detection using UAVs and 
satellite imagery also provides valuable macro-level insights but suffers from latency and 
weather-related limitations. 
Overall, existing systems lack a unified architecture combining energy-efficient sensing, 
resilient communication, and real-time cloud analytics suitable for large-scale forest 
environments. These limitations motivate the development of the proposed resilient IoT–
WSN architecture for real-time forest fire detection. 
 
III. SYSTEM ARCHITECTURE: 
The proposed Resilient IoT–WSN System Architecture consists of three major layers: 
Sensing Layer, Network Layer, and Application Layer. These layers work together to provide 
continuous, real-time forest fire monitoring with high reliability and low energy 
consumption. 
 
A. Overall System Framework: 
The system architecture integrates distributed sensor nodes, cluster-based routing, a long-
range communication backbone, and cloud-enabled analytics. The operational flow is as 
follows: 
Sensor Nodes → Cluster Head → Base Station → Cloud Server → Monitoring Dashboard → 
Alerts 
This hierarchical structure improves scalability, reduces communication overhead, and 
enhances network resilience under node or link failures. 
 
B. Sensor Node Design: 
Each sensor node is equipped with multiple environmental sensors and a low-power 
microcontroller. 
 
1) Hardware Components 

 Microcontroller: ESP32/Arduino with embedded Wi-Fi 
 Sensors: 

o Temperature (DHT22/LM35) 
o Humidity 
o Smoke (MQ-2) 
o Gas (MQ-135) 

 Communication Module: LoRa SX1278 or ZigBee for long-range, low-power 
connectivity 

 Power Source: Rechargeable battery + solar panel 
 Local Storage: Flash memory for buffering data 

2) Node Capabilities 
 Periodic and event-driven sensing 
 Threshold-based anomaly detection 
 Sleep–wake scheduling for energy conservation 
 Self-diagnostics for identifying node faults 

This design ensures robust operation in remote and harsh forest environments. 
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C. Network Topology: 
A hybrid cluster-based multi-hop topology is adopted to reduce communication distance and 
balance node energy consumption. 
1) Clustering 
Sensor nodes are grouped into clusters. Each cluster elects a Cluster Head (CH) based on: 

 Residual energy 
 Proximity to neighboring nodes 
 Link Quality Indicator (LQI) 
 Distance to Base Station 

2) Cluster Head Responsibilities 
 Aggregating intra-cluster data 
 Performing light preprocessing 
 Forwarding data to the Base Station 

This strategy minimizes redundant transmissions and extends network lifetime. 
 
D. Communication Model: 
The system uses a dual-stage communication model: 
1) Intra-Cluster Communication 
Data is transmitted from sensor nodes to the CH using low-power short-range signals. 
2) Inter-Cluster Communication 
Cluster Heads communicate with the Base Station using long-range LoRa links, ensuring: 

 High PDR (Packet Delivery Ratio) 
 Low latency 
 Minimum packet collisions 

The communication stack includes: 
 Physical Layer: LoRa modulation 
 MAC Layer: Duty-cycle controlled LoRaWAN 
 Network Layer: Energy-aware multi-hop routing 

 
E. Base Station and Cloud Integration: 
The Base Station (BS) acts as a gateway between the WSN and the cloud platform. It 
forwards aggregated environmental data to the cloud server using Wi-Fi or GSM/4G 
connectivity. 
Cloud Services Include: 

 Real-time data storage 
 Analytics engine 
 Visualization dashboard 
 Fire alert generation (SMS, email, mobile notifications) 

The cloud also runs a lightweight anomaly-detection model for enhanced precision in 
identifying early fire indicators. 
 
F. Alert and Monitoring System: 
The monitoring dashboard provides: 

 Real-time temperature, humidity, smoke, and gas graphs 
 Heatmaps of sensor activity 
 Fire risk prediction levels 
 Automated alert notifications 

Alerts are triggered when sensor values exceed critical thresholds or when the cloud-based 
model detects an anomaly. 
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IV. METHODOLOGY: 
The proposed methodology integrates multi-parameter sensing, energy-aware routing, long-
range communication, and cloud-based analytics to achieve real-time forest fire detection. 
The operational workflow is divided into four major phases: data acquisition, preprocessing, 
routing and transmission, and cloud-level anomaly detection. 
 
A. Data Acquisition Process: 
Each sensor node periodically measures environmental parameters including temperature, 
humidity, smoke density, and gas concentration. The sensing operation follows a hybrid 
model: 
1) Periodic Sensing 
Environmental parameters are sampled at fixed intervals (e.g., every 10 seconds). 
2) Event-Driven Sensing 
If a parameter exceeds a predefined threshold, the node immediately triggers high-frequency 
sampling to capture rapid changes associated with fire ignition. 
3) Local Threshold Evaluation 
Nodes locally compare readings against critical thresholds: 

 Temperature (T) > T_critical 
 Humidity (H) < H_critical 
 Smoke (S) > S_critical 
 Gas (G) > G_critical 

If any parameter crosses the threshold, the reading is tagged as an anomaly and transmitted 
with priority. 
 
B. Data Preprocessing at Node and Cluster Head: 
1) Sensor Node Preprocessing 

 Noise reduction using moving average filtering 
 Packaging readings into compact data frames 
 Applying sleep–wake scheduling to conserve energy 

2) Cluster Head Preprocessing 
 Aggregation of intra-cluster data 
 Removal of redundant or duplicate packets 
 Priority assignment for anomaly-tagged packets 

This reduces network traffic and improves routing efficiency. 
 
C. Energy-Aware Routing Algorithm: 
A hybrid cluster-based routing protocol is used to optimize energy consumption. 
1) Cluster Head Selection Criteria 
Cluster Heads are selected based on: 

 Residual energy (E_res) 
 Node connectivity (degree centrality) 
 Link Quality Indicator (LQI) 
 Distance to Base Station (d_BS) 

A fitness score determines the CH: 
F = α(E_res) + β(LQI) – γ(d_BS) 
where α, β, γ are weight coefficients. 
2) Multi-Hop Inter-Cluster Routing 
Data is forwarded through CHs that offer: 

 Minimum energy consumption 
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 Strong signal strength 
 Low communication latency 

3) Routing Steps 
1. Sensor → CH 
2. CH → Forwarding CH (if required) 
3. Forwarding CH → Base Station 
4. Base Station → Cloud 

This ensures reliability even when nodes fail. 
 
D. Cloud-Level Analytics and Anomaly Detection: 
Environmental data arriving at the cloud is processed through the analytics engine. 
1) Data Normalization and Storage 
Sensor data is normalized, timestamped, and stored in the cloud database. 
2) Feature Extraction 
Extracted features include: 

 Temperature variance 
 Rate of humidity drop 
 Smoke density deviation 
 Gas concentration patterns 

3) Anomaly Detection Model 
A lightweight Decision Tree/Random Forest classifier evaluates the fire risk index (FRI): 
FRI = f(T, H, S, G) 
If FRI > threshold, an immediate fire alert is generated. 
4) Visualization & Alerts 
The dashboard displays: 

 Real-time graphs 
 Geographic sensor mapping 
 Fire risk indicators 

Alerts are sent via: 
 SMS 
 Email 
 Mobile push notifications 

 
E. System Workflow: 
The overall system workflow is summarized below: 

1. Sensor Node: Collects data → applies local filtering 
2. Cluster Head: Aggregates data → performs priority mapping 
3. Network: Routes data using energy-aware multi-hop routing 
4. Base Station: Forwards packets to cloud service 
5. Cloud: Performs analytics → generates alerts 
6. User Interface: Displays dashboards → sends notifications 

 
F. Algorithm Description (Simplified): 
Algorithm FireDetection() 
1: Initialize all sensor nodes N 
2: for each node i in N do 
3:     Sense T, H, S, G 
4:     if (T > Tcritical OR H < Hcritical OR S > Scritical OR G > 
Gcritical) then 
5:         Tag reading as ANOMALY 
6:     end if 

GRADIVA REVIEW JOURNAL

VOLUME 11 ISSUE 12 2025

ISSN NO : 0363-8057

PAGE NO: 97



7:     Apply local filtering 
8:     Send data to CH 
9: end for 
10: CH aggregates and forwards data 
11: Cloud computes FRI = f(T,H,S,G) 
12: if (FRI > threshold) generate ALERT 
13: end Algorithm 
 

V. RESULTS AND DISCUSSION: 
The proposed resilient IoT–WSN system was evaluated using both simulation and prototype 
deployment to assess performance metrics including detection accuracy, network lifetime, 
energy efficiency, and communication reliability. 
 
A. Simulation Setup 

 Software Tools: MATLAB and NS-2 for network simulation 
 Number of Nodes: 40–120 sensor nodes 
 Coverage Area: 1 km × 1 km forest region 
 Communication: LoRa for long-range, low-power data transmission 
 Environmental Parameters: Temperature, humidity, smoke density, gas 

concentration 
 Protocols Compared: Proposed routing vs. LEACH and PEGASIS 

 
B. Detection Accuracy 
The system demonstrated high precision in detecting early fire events. 
Parameter LEACH PEGASIS Proposed System 
Detection Accuracy 85.2% 88.5% 94.3% 
False Alarm Rate 6.8% 5.2% 3.1% 
Detection Delay 1.9 s 1.7 s 1.2 s 

 Multi-sensor integration reduced false positives. 
 Threshold-based anomaly detection coupled with cloud analytics enabled rapid 

detection. 
 
C. Energy Consumption and Network Lifetime: 
The hybrid cluster-based routing improved energy efficiency: 
Metric LEACH PEGASIS Proposed System 
Average Energy Consumption per Node 0.76 J 0.69 J 0.51 J 
Network Lifetime (First Node Dies) 410 h 440 h 528 h 

 Cluster Head rotation and sleep–wake scheduling minimized energy depletion. 
 Long-range LoRa communication reduced packet retransmissions, saving energy. 

 
D. Communication Reliability: 

 Packet Delivery Ratio (PDR): 93% (Proposed) vs. 82% (LEACH) 
 End-to-End Latency: 1.2 s (Proposed) vs. 1.9 s (LEACH) 
 Link Stability: High due to optimized multi-hop routing 

The system maintained reliable data transmission even under node failures and environmental 
interference. 
 
E. Prototype Deployment: 
A small-scale physical prototype was tested using: 
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 ESP32 microcontrollers 
 DHT22 (Temperature & Humidity) 
 MQ-2 / MQ-135 (Smoke & Gas Sensors) 
 LoRa SX1278 modules 
 Solar-powered battery packs 

Observations: 
 Early-stage fire events were detected within 8–15 seconds. 
 Alerts were delivered in real-time via mobile notifications. 
 The system successfully demonstrated energy efficiency and network resilience in a 

simulated forest environment. 
 
F. Comparative Analysis: 
The proposed system outperforms existing solutions: 
Feature Traditional WSN IoT-Camera Proposed IoT–WSN 
Early Detection Moderate Slow High 
Energy Efficiency Low Medium High 
Network Resilience Low Medium High 
Scalability Moderate Low High 
Cost Moderate High Low 

 The integration of cloud analytics and lightweight anomaly detection enhances 
performance. 

 Multi-sensor redundancy ensures robust detection under environmental variability. 
 
G. Discussion: 
The results confirm that the proposed IoT-enabled WSN framework is suitable for real-time 
forest fire monitoring: 

 Accurate early detection reduces response time for forest management authorities. 
 Energy-efficient design prolongs network lifetime for remote deployments. 
 Resilient multi-hop routing ensures reliable communication in harsh environments. 
 Scalable architecture allows deployment over large forest areas with minimal 

maintenance. 
 
VI. CONCLUSION AND FUTURE WORK: 
 
A. Conclusion 
Forest fires pose critical threats to ecosystems, human life, and property. This paper presents 
a resilient IoT–WSN system architecture for real-time forest fire detection. The proposed 
system integrates multi-parameter sensor nodes, cluster-based energy-aware routing, long-
range LoRa communication, and cloud-based analytics for efficient, reliable, and rapid fire 
detection. 
Simulation and prototype results demonstrate that the proposed system: 

 Achieves 94.3% detection accuracy with low false alarm rates 
 Reduces end-to-end latency to 1.2 seconds 
 Improves network lifetime and energy efficiency 
 Maintains high packet delivery ratio and network resilience 

The architecture is scalable, cost-effective, and suitable for deployment in large forested 
regions, providing timely alerts to forest management authorities and enabling rapid 
response. 
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B. Future Work: 
Potential future improvements include: 

1. Integration with UAVs and Satellite Data: 
Enhances spatial coverage and provides macro-level fire monitoring. 

2. Advanced Machine Learning Models: 
Deploying LSTM or CNN-based models can improve prediction accuracy for 
complex fire scenarios. 

3. Edge Computing Implementation: 
Performing preliminary analytics at sensor nodes or cluster heads to reduce latency 
and cloud dependency. 

4. Blockchain-based Data Security: 
Ensures secure transmission and prevents data tampering in distributed networks. 

5. Self-Healing WSN Mechanisms: 
Autonomous node repositioning and fault recovery to maintain network continuity. 

These enhancements will enable a fully autonomous, intelligent forest fire monitoring system 
with higher efficiency and reliability. 
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